1
|
Moritz C, Sega M, Innerbichler M, Geissler PL, Dellago C. Weak scaling of the contact distance between two fluctuating interfaces with system size. Phys Rev E 2020; 102:062801. [PMID: 33465946 DOI: 10.1103/physreve.102.062801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
A pair of flat parallel surfaces, each freely diffusing along the direction of their separation, will eventually come into contact. If the shapes of these surfaces also fluctuate, then contact will occur when their centers-of-mass remain separated by a nonzero distance ℓ. An example of such a situation is the motion of interfaces between two phases at conditions of thermodynamic coexistence, and in particular the annihilation of domain wall pairs under periodic boundary conditions. Here we present a general approach to calculate the probability distribution of the contact distance ℓ and determine how its most likely value ℓ^{*} depends on the surfaces' lateral size L. Using the Edward-Wilkinson equation as a model for interfaces, we demonstrate that ℓ^{*} scales weakly with system size, i.e., the dependence of ℓ^{*} on L for both (1+1)- and (2+1)-dimensional interfaces is such that lim_{L→∞}(ℓ^{*}/L)=0. In particular, for (2+1)-dimensional interfaces ℓ^{*} is an algebraic function of logL, a result that is confirmed by computer simulations of slab-shaped domains formed under periodic boundary conditions. This weak scaling implies that such domains remain topologically intact until ℓ becomes very small compared to the lateral size of the interface, contradicting expectations from equilibrium thermodynamics.
Collapse
Affiliation(s)
- Clemens Moritz
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Marcello Sega
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Straße 248, 90429 Nürnberg, Germany
| | - Max Innerbichler
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Phillip L Geissler
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Christoph Dellago
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Erwin Schrödinger Institute for Mathematics and Physics, Boltzmanngasse 9, 1090, Vienna, Austria
| |
Collapse
|
2
|
Almeida RAL, Ferreira SO, Ferraz I, Oliveira TJ. Initial pseudo-steady state & asymptotic KPZ universality in semiconductor on polymer deposition. Sci Rep 2017. [PMID: 28630488 PMCID: PMC5476714 DOI: 10.1038/s41598-017-03843-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Kardar-Parisi-Zhang (KPZ) class is a paradigmatic example of universality in nonequilibrium phenomena, but clear experimental evidences of asymptotic 2D-KPZ statistics are still very rare, and far less understanding stems from its short-time behavior. We tackle such issues by analyzing surface fluctuations of CdTe films deposited on polymeric substrates, based on a huge spatio-temporal surface sampling acquired through atomic force microscopy. A pseudo-steady state (where average surface roughness and spatial correlations stay constant in time) is observed at initial times, persisting up to deposition of ~104 monolayers. This state results from a fine balance between roughening and smoothening, as supported by a phenomenological growth model. KPZ statistics arises at long times, thoroughly verified by universal exponents, spatial covariance and several distributions. Recent theoretical generalizations of the Family-Vicsek scaling and the emergence of log-normal distributions during interface growth are experimentally confirmed. These results confirm that high vacuum vapor deposition of CdTe constitutes a genuine 2D-KPZ system, and expand our knowledge about possible substrate-induced short-time behaviors.
Collapse
Affiliation(s)
- Renan A L Almeida
- Tokyo Institute of Technology, Department of Physics, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.
| | - Sukarno O Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Isnard Ferraz
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Alves WS, Rodrigues EA, Fernandes HA, Mello BA, Oliveira FA, Costa IVL. Analysis of etching at a solid-solid interface. Phys Rev E 2016; 94:042119. [PMID: 27841509 DOI: 10.1103/physreve.94.042119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 06/06/2023]
Abstract
We present a method to derive an analytical expression for the roughness of an eroded surface whose dynamics are ruled by cellular automaton. Starting from the automaton, we obtain the time evolution of the height average and height variance (roughness). We apply this method to the etching model in 1+1 dimensions, and then we obtain the roughness exponent. Using this in conjunction with the Galilean invariance we obtain the other exponents, which perfectly match the numerical results obtained from simulations. These exponents are exact, and they are the same as those exhibited by the Kardar-Parisi-Zhang (KPZ) model for this dimension. Therefore, our results provide proof for the conjecture that the etching and KPZ models belong to the same universality class. Moreover, the method is general, and it can be applied to other cellular automata models.
Collapse
Affiliation(s)
- Washington S Alves
- Graduate Program in Material Science, Faculdade UnB Planaltina, Universidade de Brasília, CEP 73300-000, Planaltina, DF, Brazil
- Instituto de Física, Universidade de Brasília, CP 04513, CEP 70919-970, Brasília, DF, Brazil
| | - Evandro A Rodrigues
- Instituto de Física, Universidade de Brasília, CP 04513, CEP 70919-970, Brasília, DF, Brazil
| | - Henrique A Fernandes
- Universidade Federal de Goiás, Campus Jataí, Br 364, Km 192, 3800, Parque Industrial, CEP 75801-615, Jataí, Goiás, Brazil
| | - Bernardo A Mello
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Fernando A Oliveira
- Instituto de Física, Universidade de Brasília, CP 04513, CEP 70919-970, Brasília, DF, Brazil
- Korea Institute for Advanced Study, Seoul 130722, South Korea
| | - Ismael V L Costa
- Graduate Program in Material Science, Faculdade UnB Planaltina, Universidade de Brasília, CEP 73300-000, Planaltina, DF, Brazil
| |
Collapse
|
4
|
Carrasco ISS, Oliveira TJ. Width and extremal height distributions of fluctuating interfaces with window boundary conditions. Phys Rev E 2016; 93:012801. [PMID: 26871135 DOI: 10.1103/physreve.93.012801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Indexed: 11/07/2022]
Abstract
We present a detailed study of squared local roughness (SLRDs) and local extremal height distributions (LEHDs), calculated in windows of lateral size l, for interfaces in several universality classes, in substrate dimensions d_{s}=1 and 2. We show that their cumulants follow a Family-Vicsek-type scaling, and, at early times, when ξ≪l (ξ is the correlation length), the rescaled SLRDs are given by log-normal distributions, with their nth cumulant scaling as (ξ/l)^{(n-1)d_{s}}. This gives rise to an interesting temporal scaling for such cumulants as 〈w_{n}〉_{c}∼t^{γ_{n}}, with γ_{n}=2nβ+(n-1)d_{s}/z=[2n+(n-1)d_{s}/α]β. This scaling is analytically proved for the Edwards-Wilkinson (EW) and random deposition interfaces and numerically confirmed for other classes. In general, it is featured by small corrections, and, thus, it yields exponents γ_{n} (and, consequently, α,β and z) in good agreement with their respective universality class. Thus, it is a useful framework for numerical and experimental investigations, where it is usually hard to estimate the dynamic z and mainly the (global) roughness α exponents. The stationary (for ξ≫l) SLRDs and LEHDs of the Kardar-Parisi-Zhang (KPZ) class are also investigated, and, for some models, strong finite-size corrections are found. However, we demonstrate that good evidence of their universality can be obtained through successive extrapolations of their cumulant ratios for long times and large l. We also show that SLRDs and LEHDs are the same for flat and curved KPZ interfaces.
Collapse
Affiliation(s)
- I S S Carrasco
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
5
|
Oliveira TJ, Alves SG, Ferreira SC. Kardar-Parisi-Zhang universality class in (2+1) dimensions: universal geometry-dependent distributions and finite-time corrections. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:040102. [PMID: 23679356 DOI: 10.1103/physreve.87.040102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 06/02/2023]
Abstract
The dynamical regimes of models belonging to the Kardar-Parisi-Zhang (KPZ) universality class are investigated in d=2+1 by extensive simulations considering flat and curved geometries. Geometry-dependent universal distributions, different from their Tracy-Widom counterpart in one dimension, were found. Distributions exhibit finite-time corrections hallmarked by a shift in the mean decaying as t(-β), where β is the growth exponent. Our results support a generalization of the ansatz h=v(∞)t+(Γt)(β)χ+η+ζt(-β) to higher dimensions, where v(∞), Γ, ζ, and η are nonuniversal quantities whereas β and χ are universal and the last one depends on the surface geometry. Generalized Gumbel distributions provide very good fits of the distributions in at least four orders of magnitude around the peak, which can be used for comparisons with experiments. Our numerical results call for analytical approaches and experimental realizations of the KPZ class in two-dimensional systems.
Collapse
Affiliation(s)
- T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|