1
|
Armstrong MR, Lindsey RK, Goldman N, Nielsen MH, Stavrou E, Fried LE, Zaug JM, Bastea S. Ultrafast shock synthesis of nanocarbon from a liquid precursor. Nat Commun 2020; 11:353. [PMID: 31953422 PMCID: PMC6968971 DOI: 10.1038/s41467-019-14034-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/13/2019] [Indexed: 11/25/2022] Open
Abstract
Carbon nanoallotropes are important nanomaterials with unusual properties and promising applications. High pressure synthesis has the potential to open new avenues for controlling and designing their physical and chemical characteristics for a broad range of uses but it remains little understood due to persistent conceptual and experimental challenges, in addition to fundamental physics and chemistry questions that are still unresolved after many decades. Here we demonstrate sub-nanosecond nanocarbon synthesis through the application of laser-induced shock-waves to a prototypical organic carbon-rich liquid precursor-liquid carbon monoxide. Overlapping large-scale molecular dynamics simulations capture the atomistic details of the nanoparticles' formation and evolution in a reactive environment and identify classical evaporation-condensation as the mechanism governing their growth on these time scales.
Collapse
Affiliation(s)
- Michael R Armstrong
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
| | - Rebecca K Lindsey
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
| | - Nir Goldman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Michael H Nielsen
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Elissaios Stavrou
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Laurence E Fried
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Joseph M Zaug
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Sorin Bastea
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
| |
Collapse
|
2
|
Coleman AL, Gorman MG, Briggs R, McWilliams RS, McGonegle D, Bolme CA, Gleason AE, Fratanduono DE, Smith RF, Galtier E, Lee HJ, Nagler B, Granados E, Collins GW, Eggert JH, Wark JS, McMahon MI. Identification of Phase Transitions and Metastability in Dynamically Compressed Antimony Using Ultrafast X-Ray Diffraction. PHYSICAL REVIEW LETTERS 2019; 122:255704. [PMID: 31347883 DOI: 10.1103/physrevlett.122.255704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 06/10/2023]
Abstract
Ultrafast x-ray diffraction at the LCLS x-ray free electron laser has been used to resolve the structural behavior of antimony under shock compression to 59 GPa. Antimony is seen to transform to the incommensurate, host-guest phase Sb-II at ∼11 GPa, which forms on nanosecond timescales with ordered guest-atom chains. The high-pressure bcc phase Sb-III is observed above ∼15 GPa, some 8 GPa lower than in static compression studies, and mixed Sb-III/liquid diffraction are obtained between 38 and 59 GPa. An additional phase which does not exist under static compression, Sb-I^{'}, is also observed between 8 and 12 GPa, beyond the normal stability field of Sb-I, and resembles Sb-I with a resolved Peierls distortion. The incommensurate Sb-II high-pressure phase can be recovered metastably on release to ambient pressure, where it is stable for more than 10 ns.
Collapse
Affiliation(s)
- A L Coleman
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA
| | - M G Gorman
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA
| | - R Briggs
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA
| | - R S McWilliams
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - D McGonegle
- Department of Physics, Clarendon Laboratory, Parks Road, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - C A Bolme
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - A E Gleason
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
- Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA
| | - D E Fratanduono
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA
| | - R F Smith
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA
| | - E Galtier
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - H J Lee
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - B Nagler
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - E Granados
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G W Collins
- Department of Mechanical of Engineering, University of Rochester, 235 Hopeman Building, P.O. Box 270132, Rochester, New York 12647, USA
| | - J H Eggert
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA
| | - J S Wark
- Department of Physics, Clarendon Laboratory, Parks Road, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - M I McMahon
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
3
|
Ultrafast Imaging of Laser Driven Shock Waves using Betatron X-rays from a Laser Wakefield Accelerator. Sci Rep 2018; 8:11010. [PMID: 30030516 PMCID: PMC6054639 DOI: 10.1038/s41598-018-29347-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/09/2018] [Indexed: 11/08/2022] Open
Abstract
Betatron radiation from laser wakefield accelerators is an ultrashort pulsed source of hard, synchrotron-like x-ray radiation. It emanates from a centimetre scale plasma accelerator producing GeV level electron beams. In recent years betatron radiation has been developed as a unique source capable of producing high resolution x-ray images in compact geometries. However, until now, the short pulse nature of this radiation has not been exploited. This report details the first experiment to utilize betatron radiation to image a rapidly evolving phenomenon by using it to radiograph a laser driven shock wave in a silicon target. The spatial resolution of the image is comparable to what has been achieved in similar experiments at conventional synchrotron light sources. The intrinsic temporal resolution of betatron radiation is below 100 fs, indicating that significantly faster processes could be probed in future without compromising spatial resolution. Quantitative measurements of the shock velocity and material density were made from the radiographs recorded during shock compression and were consistent with the established shock response of silicon, as determined with traditional velocimetry approaches. This suggests that future compact betatron imaging beamlines could be useful in the imaging and diagnosis of high-energy-density physics experiments.
Collapse
|
4
|
Gorman MG, Briggs R, McBride EE, Higginbotham A, Arnold B, Eggert JH, Fratanduono DE, Galtier E, Lazicki AE, Lee HJ, Liermann HP, Nagler B, Rothkirch A, Smith RF, Swift DC, Collins GW, Wark JS, McMahon MI. Direct Observation of Melting in Shock-Compressed Bismuth With Femtosecond X-ray Diffraction. PHYSICAL REVIEW LETTERS 2015; 115:095701. [PMID: 26371663 DOI: 10.1103/physrevlett.115.095701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 06/05/2023]
Abstract
The melting of bismuth in response to shock compression has been studied using in situ femtosecond x-ray diffraction at an x-ray free electron laser. Both solid-solid and solid-liquid phase transitions are documented using changes in discrete diffraction peaks and the emergence of broad, liquid scattering upon release from shock pressures up to 14 GPa. The transformation from the solid state to the liquid is found to occur in less than 3 ns, very much faster than previously believed. These results are the first quantitative measurements of a liquid material obtained on shock release using x-ray diffraction, and provide an upper limit for the time scale of melting of bismuth under shock loading.
Collapse
Affiliation(s)
- M G Gorman
- SUPA, School of Physics & Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, UK
| | - R Briggs
- SUPA, School of Physics & Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, UK
| | - E E McBride
- SUPA, School of Physics & Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, UK
- DESY Photon Science, Notkestr. 85, D-22607 Hamburg, Germany
| | - A Higginbotham
- Department of Physics, Clarendon Laboratory, Parks Road, University of Oxford, Oxford OX1 3PU, UK
| | - B Arnold
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J H Eggert
- Lawrence Livermore National Laboratory, 6000 East Avenue, Livermore, California 94500, USA
| | - D E Fratanduono
- Lawrence Livermore National Laboratory, 6000 East Avenue, Livermore, California 94500, USA
| | - E Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A E Lazicki
- Lawrence Livermore National Laboratory, 6000 East Avenue, Livermore, California 94500, USA
| | - H J Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - H P Liermann
- DESY Photon Science, Notkestr. 85, D-22607 Hamburg, Germany
| | - B Nagler
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Rothkirch
- DESY Photon Science, Notkestr. 85, D-22607 Hamburg, Germany
| | - R F Smith
- Lawrence Livermore National Laboratory, 6000 East Avenue, Livermore, California 94500, USA
| | - D C Swift
- Lawrence Livermore National Laboratory, 6000 East Avenue, Livermore, California 94500, USA
| | - G W Collins
- Lawrence Livermore National Laboratory, 6000 East Avenue, Livermore, California 94500, USA
| | - J S Wark
- Department of Physics, Clarendon Laboratory, Parks Road, University of Oxford, Oxford OX1 3PU, UK
| | - M I McMahon
- SUPA, School of Physics & Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, UK
| |
Collapse
|
5
|
Armstrong MR, Zaug JM, Grant CD, Crowhurst JC, Bastea S. Ultrafast Shock Compression of an Oxygen-Balanced Mixture of Nitromethane and Hydrogen Peroxide. J Phys Chem A 2014; 118:6148-53. [DOI: 10.1021/jp502891p] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Michael R. Armstrong
- Physical and Life Sciences
Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph M. Zaug
- Physical and Life Sciences
Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Christian D. Grant
- Physical and Life Sciences
Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jonathan C. Crowhurst
- Physical and Life Sciences
Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sorin Bastea
- Physical and Life Sciences
Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
6
|
Swift DC, Kraus RG, Loomis EN, Hicks DG, McNaney JM, Johnson RP. Shock formation and the ideal shape of ramp compression waves. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:066115. [PMID: 19256913 DOI: 10.1103/physreve.78.066115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Indexed: 05/27/2023]
Abstract
We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long-duration ramps are desired.
Collapse
Affiliation(s)
- Damian C Swift
- Condensed Matter and Materials Division,Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA.
| | | | | | | | | | | |
Collapse
|