• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643712)   Today's Articles (431)   Subscriber (50621)
For: Yudistiawan WP, Ansumali S, Karlin IV. Hydrodynamics beyond Navier-Stokes: the slip flow model. Phys Rev E Stat Nonlin Soft Matter Phys 2008;78:016705. [PMID: 18764079 DOI: 10.1103/physreve.78.016705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 05/06/2008] [Indexed: 05/26/2023]
Number Cited by Other Article(s)
1
Johnson JT, Madadi M, Ladiges DR, Shi Y, Hughes BD, Sader JE. Variational solution to the lattice Boltzmann method for Couette flow. Phys Rev E 2024;109:055305. [PMID: 38907478 DOI: 10.1103/physreve.109.055305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/16/2024] [Indexed: 06/24/2024]
2
Khatoonabadi M, Prasianakis IN, Mantzaras J. Lattice Boltzmann modeling and simulation of velocity and concentration slip effects on the catalytic reaction rate of strongly nonequimolar reactions in microflows. Phys Rev E 2022;106:065305. [PMID: 36671136 DOI: 10.1103/physreve.106.065305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
3
Jonnalagadda A, Sharma A, Agrawal A. Onsager-regularized lattice Boltzmann method: A nonequilibrium thermodynamics-based regularized lattice Boltzmann method. Phys Rev E 2021;104:015313. [PMID: 34412301 DOI: 10.1103/physreve.104.015313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/01/2021] [Indexed: 11/06/2022]
4
Kolluru PK, Atif M, Namburi M, Ansumali S. Lattice Boltzmann model for weakly compressible flows. Phys Rev E 2020;101:013309. [PMID: 32069676 DOI: 10.1103/physreve.101.013309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Indexed: 11/07/2022]
5
Silva G. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries. Phys Rev E 2018;98:023302. [PMID: 30253480 DOI: 10.1103/physreve.98.023302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 06/08/2023]
6
Gan Y, Xu A, Zhang G, Zhang Y, Succi S. Discrete Boltzmann trans-scale modeling of high-speed compressible flows. Phys Rev E 2018;97:053312. [PMID: 29906918 DOI: 10.1103/physreve.97.053312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 06/08/2023]
7
Sofonea V, Biciuşcă T, Busuioc S, Ambruş VE, Gonnella G, Lamura A. Corner-transport-upwind lattice Boltzmann model for bubble cavitation. Phys Rev E 2018;97:023309. [PMID: 29548242 DOI: 10.1103/physreve.97.023309] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 11/07/2022]
8
Singh S, Jiang F, Tsuji T. Impact of the kinetic boundary condition on porous media flow in the lattice Boltzmann formulation. Phys Rev E 2018;96:013303. [PMID: 29347122 DOI: 10.1103/physreve.96.013303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 11/07/2022]
9
Silva G, Semiao V. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries. Phys Rev E 2017;96:013311. [PMID: 29347253 DOI: 10.1103/physreve.96.013311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 11/07/2022]
10
Singh SK, Thantanapally C, Ansumali S. Gaseous microflow modeling using the Fokker-Planck equation. Phys Rev E 2016;94:063307. [PMID: 28085383 DOI: 10.1103/physreve.94.063307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Indexed: 11/07/2022]
11
Ambruş VE, Sofonea V. High-order thermal lattice Boltzmann models derived by means of Gauss quadrature in the spherical coordinate system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012;86:016708. [PMID: 23005564 DOI: 10.1103/physreve.86.016708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Indexed: 06/01/2023]
12
Prabha SK, Sathian SP. Molecular-dynamics study of Poiseuille flow in a nanochannel and calculation of energy and momentum accommodation coefficients. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012;85:041201. [PMID: 22680461 DOI: 10.1103/physreve.85.041201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 02/17/2012] [Indexed: 06/01/2023]
13
Meng J, Zhang Y, Shan X. Multiscale lattice Boltzmann approach to modeling gas flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011;83:046701. [PMID: 21599328 DOI: 10.1103/physreve.83.046701] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Indexed: 05/30/2023]
14
Meng J, Zhang Y. Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011;83:036704. [PMID: 21517622 DOI: 10.1103/physreve.83.036704] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 11/20/2010] [Indexed: 05/30/2023]
15
Yudistiawan WP, Kwak SK, Patil DV, Ansumali S. Higher-order Galilean-invariant lattice Boltzmann model for microflows: single-component gas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010;82:046701. [PMID: 21230406 DOI: 10.1103/physreve.82.046701] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/25/2010] [Indexed: 05/30/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA