1
|
Johnson JT, Madadi M, Ladiges DR, Shi Y, Hughes BD, Sader JE. Variational solution to the lattice Boltzmann method for Couette flow. Phys Rev E 2024; 109:055305. [PMID: 38907478 DOI: 10.1103/physreve.109.055305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/16/2024] [Indexed: 06/24/2024]
Abstract
Literature studies of the lattice Boltzmann method (LBM) demonstrate hydrodynamics beyond the continuum limit. This includes exact analytical solutions to the LBM, for the bulk velocity and shear stress of Couette flow under diffuse reflection at the walls through the solution of equivalent moment equations. We prove that the bulk velocity and shear stress of Couette flow with Maxwell-type boundary conditions at the walls, as specified by two-dimensional isothermal lattice Boltzmann models, are inherently linear in Mach number. Our finding enables a systematic variational approach to be formulated that exhibits superior computational efficiency than the previously reported moment method. Specifically, the number of partial differential equations (PDEs) in the variational method grows linearly with quadrature order while the number of moment method PDEs grows quadratically. The variational method directly yields a system of linear PDEs that provide exact analytical solutions to the LBM bulk velocity field and shear stress for Couette flow with Maxwell-type boundary conditions. It is anticipated that this variational approach will find utility in calculating analytical solutions for novel lattice Boltzmann quadrature schemes and other flows.
Collapse
|
2
|
Khatoonabadi M, Prasianakis IN, Mantzaras J. Lattice Boltzmann modeling and simulation of velocity and concentration slip effects on the catalytic reaction rate of strongly nonequimolar reactions in microflows. Phys Rev E 2022; 106:065305. [PMID: 36671136 DOI: 10.1103/physreve.106.065305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A lattice Boltzmann (LB) interfacial gas-solid three-dimensional model is developed for isothermal multicomponent flows with strongly nonequimolar catalytic reactions, further accounting for the presence of velocity slips and concentration jumps. The model includes diffusion coefficients of all reactive species in the calculation of the catalytic reaction rates as well as an updated velocity at the reactive boundary node. Lattice Boltzmann simulations are performed in a catalytic channel-flow geometry under a wide range of Knudsen (Kn) and surface Damköhler (Da_{s}) numbers. Comparisons with simulations from a computational fluid dynamics (CFD) Navier-Stokes solver show good agreement in the continuum regime (Kn<0.01) in terms of flow velocity and reactive species distributions, while comparisons with direct simulation Monte Carlo results from the literature attest to the model's applicability in capturing the correct slip velocity at Kn as high as 0.1, even with a significantly reduced number of grid points (N=10) in the cross-flow direction. Theoretical and numerical results demonstrate that the term Da_{s}×Kn×A_{2} (where A_{2} is a function of the mass accommodation coefficient) determines the significance of the concentration jump on the catalytic reaction rate. The developed model is applicable for many catalytic microflow systems with complex geometries (such as reactors with porous networks) and large velocity/concentration slips (such as catalytic microthrusters for space applications).
Collapse
Affiliation(s)
- Meysam Khatoonabadi
- Paul Scherrer Institute, Laboratory for Scientific Computing and Modeling, Division Scientific Computing, Theory, and Data, CH-5232 Villigen PSI, Switzerland
| | - I Nikolaos Prasianakis
- Paul Scherrer Institute, Waste Management Laboratory, Nuclear Energy and Safety Division, CH-5232 Villigen-PSI, Switzerland
| | - John Mantzaras
- Paul Scherrer Institute, Laboratory for Scientific Computing and Modeling, Division Scientific Computing, Theory, and Data, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
3
|
Jonnalagadda A, Sharma A, Agrawal A. Onsager-regularized lattice Boltzmann method: A nonequilibrium thermodynamics-based regularized lattice Boltzmann method. Phys Rev E 2021; 104:015313. [PMID: 34412301 DOI: 10.1103/physreve.104.015313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/01/2021] [Indexed: 11/06/2022]
Abstract
The regularized class of lattice Boltzmann methods (LBMs) leverage the potency of the standard lattice-Bhatnagar-Gross-Krook method by filtering out spurious nonhydrodynamic moments from the moment space; this is achieved through evaluating regularized populations via a multiscale or a Hermite polynomial expansion approach. In this paper, we propose an alternative approach for evaluating the lattice populations. This approach is based on a kinetic theory that is consistent with nonequilibrium thermodynamics and obeys the Onsager-reciprocity principle. The proposed method is verified and validated for a number of canonical problems such as the athermal shock tube, the double periodic shear layer, the lid driven cavity, flow past square cylinder, and Poiseuille flow at nonvanishing Knudsen numbers. Additionally, the proposed method is compared to existing regularized LBM schemes and is shown to yield significant improvement in the stability and accuracy of the simulations.
Collapse
Affiliation(s)
- Anirudh Jonnalagadda
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai-400076, India
| | - Atul Sharma
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai-400076, India
| | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai-400076, India
| |
Collapse
|
4
|
Kolluru PK, Atif M, Namburi M, Ansumali S. Lattice Boltzmann model for weakly compressible flows. Phys Rev E 2020; 101:013309. [PMID: 32069676 DOI: 10.1103/physreve.101.013309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Indexed: 11/07/2022]
Abstract
We present an energy conserving lattice Boltzmann model based on a crystallographic lattice for simulation of weakly compressible flows. The theoretical requirements and the methodology to construct such a model are discussed. We demonstrate that the model recovers the isentropic sound speed in addition to the effects of viscous heating and heat flux dynamics. Several test cases for acoustics and thermal and thermoacoustic flows are simulated to show the accuracy of the proposed model.
Collapse
Affiliation(s)
- Praveen Kumar Kolluru
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Mohammad Atif
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Manjusha Namburi
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Santosh Ansumali
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
5
|
Silva G. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries. Phys Rev E 2018; 98:023302. [PMID: 30253480 DOI: 10.1103/physreve.98.023302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Gaseous flows inside microfluidic devices often fall in the slip-flow regime. According to this theoretical description, the Navier-Stokes model remains applicable in bulk, while at solid walls a slip velocity boundary model shall be considered. Physically, it is well established that, to properly account for the wall curvature, the wall slip velocity must be determined by the shear stress, rather than the normal component of the velocity derivative alone, as commonly applied to planar surfaces. It follows that the numerical transcription of this type of boundary condition is generally a challenging task for standard computational fluid dynamics (CFD) techniques. This paper aims to show that the realization of the slip velocity condition on arbitrarily shaped boundaries can be accomplished in a natural way with the lattice Boltzmann method (LBM). To substantiate this conclusion, this work undertakes the following three studies. First, we examine the conditions under which the generic reflection-type boundary rules used by LBM become consistent models for the slip velocity boundary condition. This effort makes use of the second-order Chapman-Enskog expansion method, where we address both planar and curved boundaries. The analysis also clarifies the capabilities and limitations behind the considered reflection-type slip schemes. Second, we revisit the family of parabolic accurate LBM slip boundary schemes, originally formulated in [Phys. Rev. E 96, 013311 (2017)2470-004510.1103/PhysRevE.96.013311] on the basis of the multireflection framework, and discuss their characteristics when operating on curved boundaries as well as the limitations of other less accurate LBM slip boundary formulations, such as the linearly accurate slip schemes and the widely popular "kinetic-based" boundary schemes. In addition, we also discuss the numerical stability of the parabolic slip schemes previously developed, providing an heuristic strategy to improve their stable range of operation. Third, we evaluate the performance of the several slip boundary schemes debated in this paper. The numerical tests correspond to two classical 2D benchmark flow problems of slip over non-planar solid surfaces, namely: (i) the velocity profile of the cylindrical Couette flow, and (ii) the permeability of a slow rarefied gas over a periodic array of circular cylindrical obstacles. The obtained numerical results confirm the competitiveness of the LBM when equipped with slip boundary schemes of parabolic accuracy as CFD tool to simulate slippage phenomena over arbitrarily non-planar surfaces. Indeed, although operating on a simple uniform mesh discretization, the LBM yields a similar, or even superior, level of accuracy compared to state-of-the-art FEM simulations conducted on hardworking body-fitted meshes. This conclusion establishes the LBM as a very appealing CFD technique for simulating microfluidic flows in the slip-flow regime, a result that deserves further exploration in future studies.
Collapse
Affiliation(s)
- Goncalo Silva
- LAETA, IDMEC, Mechanical Engineering Department, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| |
Collapse
|
6
|
Gan Y, Xu A, Zhang G, Zhang Y, Succi S. Discrete Boltzmann trans-scale modeling of high-speed compressible flows. Phys Rev E 2018; 97:053312. [PMID: 29906918 DOI: 10.1103/physreve.97.053312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 06/08/2023]
Abstract
We present a general framework for constructing trans-scale discrete Boltzmann models (DBMs) for high-speed compressible flows ranging from continuum to transition regime. This is achieved by designing a higher-order discrete equilibrium distribution function that satisfies additional nonhydrodynamic kinetic moments. To characterize the thermodynamic nonequilibrium (TNE) effects and estimate the condition under which the DBMs at various levels should be used, two measures are presented: (i) the relative TNE strength, describing the relative strength of the (N+1)th order TNE effects to the Nth order one; (ii) the TNE discrepancy between DBM simulation and relevant theoretical analysis. Whether or not the higher-order TNE effects should be taken into account in the modeling and which level of DBM should be adopted is best described by the relative TNE intensity and/or the discrepancy rather than by the value of the Knudsen number. As a model example, a two-dimensional DBM with 26 discrete velocities at Burnett level is formulated, verified, and validated.
Collapse
Affiliation(s)
- Yanbiao Gan
- North China Institute of Aerospace Engineering, Langfang 065000, China
- College of Mathematics and Informatics & FJKLMAA, Fujian Normal University, Fuzhou 350007, China
| | - Aiguo Xu
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-26, Beijing 100088, China
- Center for Applied Physics and Technology, MOE Key Center for High Energy Density Physics Simulations, College of Engineering, Peking University, Beijing 100871, China
| | - Guangcai Zhang
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-26, Beijing 100088, China
| | - Yudong Zhang
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-26, Beijing 100088, China
- Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sauro Succi
- Center for Life Nano Science at La Sapienza, Fondazione Istituto Italiano di Tecnologia, Viale Regina Margherita 295, 00161 Roma, Italy
- Physics Department and Institute for Applied Computational Science, John A. Paulson School of Applied Science and Engineering, Harvard University, Oxford Street 29, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
7
|
Sofonea V, Biciuşcă T, Busuioc S, Ambruş VE, Gonnella G, Lamura A. Corner-transport-upwind lattice Boltzmann model for bubble cavitation. Phys Rev E 2018; 97:023309. [PMID: 29548242 DOI: 10.1103/physreve.97.023309] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 11/07/2022]
Abstract
Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2.
Collapse
Affiliation(s)
- V Sofonea
- Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, 300223 Timişoara, Romania
| | - T Biciuşcă
- Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, 300223 Timişoara, Romania.,Department of Physics, West University of Timişoara, Bd. Vasile Pârvan 4, 300223 Timişoara, Romania
| | - S Busuioc
- Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, 300223 Timişoara, Romania.,Department of Physics, West University of Timişoara, Bd. Vasile Pârvan 4, 300223 Timişoara, Romania
| | - Victor E Ambruş
- Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, 300223 Timişoara, Romania.,Department of Physics, West University of Timişoara, Bd. Vasile Pârvan 4, 300223 Timişoara, Romania
| | - G Gonnella
- Dipartimento di Fisica, Università di Bari, and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, Italy
| | - A Lamura
- Istituto Applicazioni Calcolo, CNR, Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
8
|
Singh S, Jiang F, Tsuji T. Impact of the kinetic boundary condition on porous media flow in the lattice Boltzmann formulation. Phys Rev E 2018; 96:013303. [PMID: 29347122 DOI: 10.1103/physreve.96.013303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 11/07/2022]
Abstract
To emphasize the importance of the kinetic boundary condition for micro- to nanoscale flow, we present an ad hoc kinetic boundary condition suitable for torturous geological porous media. We found that the kinetic boundary condition is one of the essential features which should be supplemented to the standard lattice Boltzmann scheme in order to obtain accurate continuum observables. The claim is validated using a channel flow setup by showing the agreement of mass flux with analytical value. Further, using a homogeneous porous structure, the importance of the kinetic boundary condition is shown by comparing the permeability correction factor with the analytical value. Finally, the proposed alternate to the kinetic boundary condition is validated by showing its capability to capture the basic feature of the kinetic boundary condition.
Collapse
Affiliation(s)
- Shiwani Singh
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
| | - Fei Jiang
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan.,Department of Mechanical Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan
| | - Takeshi Tsuji
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan.,Department of Earth Resources Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Silva G, Semiao V. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries. Phys Rev E 2017; 96:013311. [PMID: 29347253 DOI: 10.1103/physreve.96.013311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 11/07/2022]
Abstract
The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over distinct wall slippage conditions, namely, no-slip, first-order slip, and second-order slip. The modeling of channel walls is discussed at both lattice-aligned and non-mesh-aligned configurations: the first case illustrates the numerical slip due to the incorrect modeling of slippage coefficients, whereas the second case adds the effect of spurious boundary layers created by the deficient accommodation of bulk solution. Finally, the slip-flow solutions predicted by LBM schemes are further evaluated for the Knudsen's paradox problem. As conclusion, this work establishes the parabolic accuracy of slip velocity schemes as the necessary condition for the consistent LBM modeling of the slip-flow regime.
Collapse
Affiliation(s)
- Goncalo Silva
- LAETA, IDMEC, Mechanical Engineering Department, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Viriato Semiao
- LAETA, IDMEC, Mechanical Engineering Department, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
10
|
Singh SK, Thantanapally C, Ansumali S. Gaseous microflow modeling using the Fokker-Planck equation. Phys Rev E 2016; 94:063307. [PMID: 28085383 DOI: 10.1103/physreve.94.063307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Indexed: 11/07/2022]
Abstract
We present a comparative study of gaseous microflow systems using the recently introduced Fokker-Planck approach and other methods such as: direct simulation Monte Carlo, lattice Boltzmann, and variational solution of Boltzmann-BGK. We show that this Fokker-Plank approach performs efficiently at intermediate values of Knudsen number, a region where direct simulation Monte Carlo becomes expensive and lattice Boltzmann becomes inaccurate. We also investigate the effectiveness of a recently proposed Fokker-Planck model in simulations of heat transfer, as a function of relevant parameters such as the Prandtl, Knudsen numbers. Furthermore, we present simulation of shock wave as a function of Mach number in transonic regime. Our results suggest that the performance of the Fokker-Planck approach is superior to that of the other methods in transition regime for rarefied gas flow and transonic regime for shock wave.
Collapse
Affiliation(s)
- S K Singh
- Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | - Santosh Ansumali
- Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
11
|
Ambruş VE, Sofonea V. High-order thermal lattice Boltzmann models derived by means of Gauss quadrature in the spherical coordinate system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:016708. [PMID: 23005564 DOI: 10.1103/physreve.86.016708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Indexed: 06/01/2023]
Abstract
We use the spherical coordinate system in the momentum space and an appropriate discretization procedure to derive a hierarchy of lattice Boltzmann (LB) models with variable temperature. The separation of the integrals in the momentum space into angular and radial parts allows us to compute the moments of the equilibrium distribution function by means of Gauss-Legendre and Gauss-Laguerre quadratures, as well as to find the elements of the discrete momentum set for each LB model in the hierarchy. The capability of the high-order models in this hierarchy to capture specific effects in microfluidics is investigated through a computer simulation of Couette flow by using the Shakhov collision term to get the right value of the Prandtl number.
Collapse
Affiliation(s)
- Victor Eugen Ambruş
- Department of Physics, West University of Timişoara, Boulevard Vasile Pârvan 4, Timişoara R-300223, Romania.
| | | |
Collapse
|
12
|
Prabha SK, Sathian SP. Molecular-dynamics study of Poiseuille flow in a nanochannel and calculation of energy and momentum accommodation coefficients. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041201. [PMID: 22680461 DOI: 10.1103/physreve.85.041201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 02/17/2012] [Indexed: 06/01/2023]
Abstract
We report a molecular-dynamics study of flow of Lennard-Jones fluid through a nanochannel where size effects predominate. The momentum and energy accommodation coefficients, which determine the amount of slip and temperature jumps, are calculated for a three-dimensional Poiseuille flow through a nano-sized channel. Accommodation coefficients are calculated by considering a " gravity"- (acceleration field) driven Poiseuille flow between two infinite parallel walls that are maintained at a fixed temperature. The Knudsen number (Kn) dependency of the accommodation coefficients, slip length, and velocity profiles is investigated. The system is also studied by varying the strength of gravity. The accommodation coefficients are found to approach a limiting value with an increase in gravity and Kn. For low values of Kn (<0.15), the slip length obtained from the velocity profiles is found to match closely the results obtained from the linear slip model. Using the calculated values of accommodation coefficients, the first- and second-order slip models are validated in the early transition regime. The study demonstrates the applicability of the Navier-Stokes equation with the second-order slip model in the early transition regime.
Collapse
Affiliation(s)
- Sooraj K Prabha
- Computational Nanotechnology Laboratory, National Institute of Technology Calicut, Kozhikode-673 601, Kerala, India
| | | |
Collapse
|
13
|
Meng J, Zhang Y, Shan X. Multiscale lattice Boltzmann approach to modeling gas flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:046701. [PMID: 21599328 DOI: 10.1103/physreve.83.046701] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Indexed: 05/30/2023]
Abstract
For multiscale gas flows, the kinetic-continuum hybrid method is usually used to balance the computational accuracy and efficiency. However, the kinetic-continuum coupling is not straightforward since the coupled methods are based on different theoretical frameworks. In particular, it is not easy to recover the nonequilibrium information required by the kinetic method, which is lost by the continuum model at the coupling interface. Therefore, we present a multiscale lattice Boltzmann (LB) method that deploys high-order LB models in highly rarefied flow regions and low-order ones in less rarefied regions. Since this multiscale approach is based on the same theoretical framework, the coupling precess becomes simple. The nonequilibrium information will not be lost at the interface as low-order LB models can also retain this information. The simulation results confirm that the present method can achieve modeling accuracy with reduced computational cost.
Collapse
Affiliation(s)
- Jianping Meng
- Department of Mechanical Engineering, University of Strathclyde, Glasgow G1 1XJ, United Kingdom.
| | | | | |
Collapse
|
14
|
Meng J, Zhang Y. Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:036704. [PMID: 21517622 DOI: 10.1103/physreve.83.036704] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 11/20/2010] [Indexed: 05/30/2023]
Abstract
Recently, kinetic theory-based lattice Boltzmann (LB) models have been developed to model nonequilibrium gas flows. Depending on the order of quadratures, a hierarchy of LB models can be constructed which we have previously shown to capture rarefaction effects in the standing-shear wave problems. Here, we further examine the capability of high-order LB models in modeling nonequilibrium flows considering gas and surface interactions and their effect on the bulk flow. The Maxwellian gas and surface interaction model, which has been commonly used in other kinetic methods including the direct simulation Monte Carlo method, is used in the LB simulations. In general, the LB models with high-order Gauss-Hermite quadratures can capture flow characteristics in the Knudsen layer and higher order quadratures give more accurate prediction. However, for the Gauss-Hermite quadratures, the present simulation results show that the LB models with the quadratures obtained from the even-order Hermite polynomials perform significantly better than those from the odd-order polynomials. This may be attributed to the zero-velocity component in the odd-order discrete set, which does not participate in wall and gas collisions, and thus underestimates the wall effect.
Collapse
Affiliation(s)
- Jianping Meng
- Department of Mechanical Engineering, University of Strathclyde, Glasgow G11XJ, United Kingdom.
| | | |
Collapse
|
15
|
Yudistiawan WP, Kwak SK, Patil DV, Ansumali S. Higher-order Galilean-invariant lattice Boltzmann model for microflows: single-component gas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:046701. [PMID: 21230406 DOI: 10.1103/physreve.82.046701] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/25/2010] [Indexed: 05/30/2023]
Abstract
We introduce a scheme which gives rise to additional degree of freedom for the same number of discrete velocities in the context of the lattice Boltzmann model. We show that an off-lattice D3Q27 model exists with correct equilibrium to recover Galilean-invariant form of Navier-Stokes equation (without any cubic error). In the first part of this work, we show that the present model can capture two important features of the microflow in a single component gas: Knudsen boundary layer and Knudsen Paradox. Finally, we present numerical results corresponding to Couette flow for two representative Knudsen numbers. We show that the off-lattice D3Q27 model exhibits better accuracy as compared to more widely used on-lattice D3Q19 or D3Q27 model. Finally, our construction of discrete velocity model shows that there is no contradiction between entropic construction and quadrature-based procedure for the construction of the lattice Boltzmann model.
Collapse
Affiliation(s)
- Wahyu Perdana Yudistiawan
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore, Singapore
| | | | | | | |
Collapse
|