Zeng C, Wang H, Nie L. Multiple current reversals and diffusion enhancement in a symmetrical periodic potential.
CHAOS (WOODBURY, N.Y.) 2012;
22:033125. [PMID:
23020464 DOI:
10.1063/1.4745853]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Transport and diffusion of Brownian particles in a symmetrical periodic potential were investigated for both overdamped and underdamped cases, where the ratchet potential is driven by an external unbiased time periodic force and correlation between thermal and potential fluctuations. It is shown that the correlation between two noises breaks the symmetry of the potential to generate motion of the Brownian particles in particular direction, and the current can reverse its direction by changing the sign of the noise correlation. For the overdamped case, the systemic parameters only induce the directed current, and the noise correlation suppresses the diffusion of the overdamped Brownian particles. However for the underdamped case, the current reverses its direction multiple times with increasing the systemic parameters, i.e., the multiple current reversal is observed, and the noise negative correlation suppresses the diffusion of the underdamped Brownian particles, while the noise positive correlation enhances it.
Collapse