1
|
Stawarz JE, Muñoz PA, Bessho N, Bandyopadhyay R, Nakamura TKM, Eriksson S, Graham DB, Büchner J, Chasapis A, Drake JF, Shay MA, Ergun RE, Hasegawa H, Khotyaintsev YV, Swisdak M, Wilder FD. The Interplay Between Collisionless Magnetic Reconnection and Turbulence. SPACE SCIENCE REVIEWS 2024; 220:90. [PMID: 39605945 PMCID: PMC11589065 DOI: 10.1007/s11214-024-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Alongside magnetic reconnection, turbulence is another fundamental nonlinear plasma phenomenon that plays a key role in energy transport and conversion in space and astrophysical plasmas. From a numerical, theoretical, and observational point of view there is a long history of exploring the interplay between these two phenomena in space plasma environments; however, recent high-resolution, multi-spacecraft observations have ushered in a new era of understanding this complex topic. The interplay between reconnection and turbulence is both complex and multifaceted, and can be viewed through a number of different interrelated lenses - including turbulence acting to generate current sheets that undergo magnetic reconnection (turbulence-driven reconnection), magnetic reconnection driving turbulent dynamics in an environment (reconnection-driven turbulence) or acting as an intermediate step in the excitation of turbulence, and the random diffusive/dispersive nature of the magnetic field lines embedded in turbulent fluctuations enabling so-called stochastic reconnection. In this paper, we review the current state of knowledge on these different facets of the interplay between turbulence and reconnection in the context of collisionless plasmas, such as those found in many near-Earth astrophysical environments, from a theoretical, numerical, and observational perspective. Particular focus is given to several key regions in Earth's magnetosphere - namely, Earth's magnetosheath, magnetotail, and Kelvin-Helmholtz vortices on the magnetopause flanks - where NASA's Magnetospheric Multiscale mission has been providing new insights into the topic.
Collapse
Affiliation(s)
- J. E. Stawarz
- Department of Mathematics, Physics, and Electrical Engineering, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST UK
| | - P. A. Muñoz
- Center for Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany
- Max Planck Institute for Solar System Research, 37077 Göttingen, Germany
| | - N. Bessho
- Department of Astronomy, University of Maryland, College Park, MD 20742 USA
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - R. Bandyopadhyay
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 USA
| | - T. K. M. Nakamura
- Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria
- Krimgen LLC, Hiroshima, 7320828, Japan
| | - S. Eriksson
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO USA
| | - D. B. Graham
- Swedish Institute of Space Physics, Uppsala, Sweden
| | - J. Büchner
- Center for Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany
- Max Planck Institute for Solar System Research, 37077 Göttingen, Germany
| | - A. Chasapis
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO USA
| | - J. F. Drake
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20740 USA
- Department of Physics, Institute for Physical Science and Technology and the Joint Space Science Institute, University of Maryland, College Park, MD 20740 USA
| | - M. A. Shay
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 USA
| | - R. E. Ergun
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO USA
- Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Boulder, CO USA
| | - H. Hasegawa
- Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan
| | | | - M. Swisdak
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20740 USA
| | - F. D. Wilder
- University of Texas at Arlington, Arlington, TX USA
| |
Collapse
|
2
|
Properties of Hall-MHD Turbulence at Sub-Ion Scales: Spectral Transfer Analysis. ATMOSPHERE 2021. [DOI: 10.3390/atmos12121632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present results of a multiscale study of Hall-magnetohydrodynamic (MHD) turbulence, carried out on a dataset of compressible nonlinear 2D Hall-MHD numerical simulations of decaying Alfvénic turbulence. For the first time, we identify two distinct regimes of fully developed turbulence. In the first one, the power spectrum of the turbulent magnetic fluctuations at sub-ion scales exhibits a power law with a slope of ∼−2.9, typically observed both in solar wind and in magnetosheath turbulence. The second regime, instead, shows a slope of −7/3, in agreement with classical theoretical models of Hall-MHD turbulence. A spectral-transfer analysis reveals that the latter regime occurs when the energy transfer rate at sub-ion scales is dominated by the Hall term, whereas in the former regime, the governing process is the dissipation (and the system exhibits large intermittency). Results of this work are relevant to the space plasma community, as they may potentially reconcile predictions from theoretical models with results from numerical simulations and spacecraft observations.
Collapse
|
3
|
Shock identification and classification in 2D magnetohydrodynamiccompressible turbulence—Orszag–Tang vortex. EXPERIMENTAL RESULTS 2021. [DOI: 10.1017/exp.2021.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Compressible magnetohydrodynamic (MHD) turbulence is a common feature of astrophysical systems such as the solar atmosphere and interstellar medium. Such systems are rife with shock waves that can redistribute and dissipate energy. For an MHD system, three broad categories of shocks exist (slow, fast, and intermediate); however, the occurrence rates of each shock type are not known for turbulent systems. Here, we present a method for detecting and classifying the full range of MHD shocks applied to the Orszag–Tang vortex. Our results show that the system is dominated by fast and slow shocks, with far less-frequent intermediate shocks appearing most readily near magnetic reconnection sites. We present a potential mechanism that could lead to the formation of intermediate shocks in MHD systems, and study the coherency and abundances of shocks in compressible MHD turbulence.
Collapse
|
4
|
Verscharen D, Wicks RT, Alexandrova O, Bruno R, Burgess D, Chen CHK, D’Amicis R, De Keyser J, de Wit TD, Franci L, He J, Henri P, Kasahara S, Khotyaintsev Y, Klein KG, Lavraud B, Maruca BA, Maksimovic M, Plaschke F, Poedts S, Reynolds CS, Roberts O, Sahraoui F, Saito S, Salem CS, Saur J, Servidio S, Stawarz JE, Štverák Š, Told D. A Case for Electron-Astrophysics. EXPERIMENTAL ASTRONOMY 2021; 54:473-519. [PMID: 36915623 PMCID: PMC9998602 DOI: 10.1007/s10686-021-09761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/07/2021] [Indexed: 06/18/2023]
Abstract
The smallest characteristic scales, at which electron dynamics determines the plasma behaviour, are the next frontier in space and astrophysical plasma research. The analysis of astrophysical processes at these scales lies at the heart of the research theme of electron-astrophysics. Electron scales are the ultimate bottleneck for dissipation of plasma turbulence, which is a fundamental process not understood in the electron-kinetic regime. In addition, plasma electrons often play an important role for the spatial transfer of thermal energy due to the high heat flux associated with their velocity distribution. The regulation of this electron heat flux is likewise not understood. By focussing on these and other fundamental electron processes, the research theme of electron-astrophysics links outstanding science questions of great importance to the fields of space physics, astrophysics, and laboratory plasma physics. In this White Paper, submitted to ESA in response to the Voyage 2050 call, we review a selection of these outstanding questions, discuss their importance, and present a roadmap for answering them through novel space-mission concepts.
Collapse
Affiliation(s)
- Daniel Verscharen
- Mullard Space Science Laboratory, University College London, Dorking, UK
- Space Science Center, University of New Hampshire, Durham, NH USA
| | - Robert T. Wicks
- Mullard Space Science Laboratory, University College London, Dorking, UK
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne, UK
| | - Olga Alexandrova
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-Meudon, Paris, France
| | - Roberto Bruno
- Instituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
| | - David Burgess
- School of Physics and Astronomy, Queen Mary University of London, London, UK
| | | | | | - Johan De Keyser
- Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - Thierry Dudok de Wit
- Laboratoire de Physique et Chimie de l’Environment et de l’Espace, CNRS, University of Orléans and CNES, Orléans, France
| | - Luca Franci
- School of Physics and Astronomy, Queen Mary University of London, London, UK
- Osservatorio Astrofisico di Arcetri, INAF, Firenze, Italy
| | - Jiansen He
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Pierre Henri
- Laboratoire de Physique et Chimie de l’Environment et de l’Espace, CNRS, University of Orléans and CNES, Orléans, France
- CNRS, UCA, OCA, Lagrange, Nice, France
| | - Satoshi Kasahara
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
| | | | - Kristopher G. Klein
- Lunar and Planetary Laboratory and Department of Planetary Sciences, University of Arizona, Tucson, AZ USA
| | - Benoit Lavraud
- Laboratoire d’astrophysique de Bordeaux, Université de Bordeaux, CNRS, Pessac, France
- Institut de Recherche en Astrophysique et Planétologie, CNRS, UPS, CNES, Université de Toulouse, Toulouse, France
| | - Bennett A. Maruca
- Department of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE USA
| | - Milan Maksimovic
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-Meudon, Paris, France
| | | | - Stefaan Poedts
- Centre for Mathematical Plasma Astrophysics, KU Leuven, Leuven, Belgium
- Institute of Physics, University of Maria Curie-Skłodowska, Lublin, Poland
| | | | - Owen Roberts
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | - Fouad Sahraoui
- Laboratoire de Physique des Plasmas, CNRS, École Polytechnique, Sorbonne Université, Observatoire de Paris-Meudon, Paris Saclay, Palaiseau, France
| | - Shinji Saito
- Space Environment Laboratory, National Institute of Information and Communications Technology, Tokyo, Japan
| | - Chadi S. Salem
- Space Sciences Laboratory, University of California, Berkeley, CA USA
| | - Joachim Saur
- Institut für Geophysik und Meteorologie, University of Cologne, Cologne, Germany
| | - Sergio Servidio
- Department of Physics, Università della Calabria, Rende, Italy
| | | | - Štěpán Štverák
- Astronomical Institute and Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Told
- Max Planck Institute for Plasma Physics, Garching, Germany
| |
Collapse
|
5
|
Vlahos L, Anastasiadis A, Papaioannou A, Kouloumvakos A, Isliker H. Sources of solar energetic particles. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180095. [PMID: 31079581 PMCID: PMC6527952 DOI: 10.1098/rsta.2018.0095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Solar energetic particles are an integral part of the physical processes related with space weather. We present a review for the acceleration mechanisms related to the explosive phenomena (flares and/or coronal mass ejections, CMEs) inside the solar corona. For more than 40 years, the main two-dimensional cartoon representing our understanding of the explosive phenomena inside the solar corona remained almost unchanged. The acceleration mechanisms related to solar flares and CMEs also remained unchanged and were part of the same cartoon. In this review, we revise the standard cartoon and present evidence from recent global magnetohydrodynamic simulations that support the argument that explosive phenomena will lead to the spontaneous formation of current sheets in different parts of the erupting magnetic structure. The evolution of the large-scale current sheets and their fragmentation will lead to strong turbulence and turbulent reconnection during solar flares and turbulent shocks. In other words, the acceleration mechanism in flares and CME-driven shocks may be the same, and their difference will be the overall magnetic topology, the ambient plasma parameters, and the duration of the unstable driver. This article is part of the theme issue 'Solar eruptions and their space weather impact'.
Collapse
Affiliation(s)
- Loukas Vlahos
- Department of Physics, Aristotle University, Thessaloniki 54124, Greece
| | - Anastasios Anastasiadis
- Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Penteli 15236, Greece
| | - Athanasios Papaioannou
- Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Penteli 15236, Greece
| | | | - Heinz Isliker
- Department of Physics, Aristotle University, Thessaloniki 54124, Greece
| |
Collapse
|
6
|
Uritsky VM, Roberts MA, DeVore CR, Karpen JT. Reconnection-Driven Magnetohydrodynamic Turbulence in a Simulated Coronal-Hole Jet. THE ASTROPHYSICAL JOURNAL 2017; 837:123. [PMID: 29430025 PMCID: PMC5799884 DOI: 10.3847/1538-4357/aa5cb9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfvén waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated with an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnection-driven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the Müller-Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the spatial orientation of the current sheets are consistent with an ensemble of nonlinear Alfvén waves. These properties also reflect the overall collimated jet structure imposed by the geometry of the reconnecting magnetic field. A comparison with Ulysses observations shows that turbulence in the jet wake is in quantitative agreement with that in the fast solar wind.
Collapse
Affiliation(s)
- Vadim M Uritsky
- Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 USA
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - Merrill A Roberts
- Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 USA
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - C Richard DeVore
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - Judith T Karpen
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| |
Collapse
|
7
|
Carver NS, Kelty-Stephen DG. Multifractality in individual honeybee behavior hints at colony-specific social cascades: Reanalysis of radio-frequency identification data from five different colonies. Phys Rev E 2017; 95:022402. [PMID: 28297945 DOI: 10.1103/physreve.95.022402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Indexed: 11/07/2022]
Abstract
Honeybees (Apis mellifera) exhibit complex coordination and interaction across multiple behaviors such as swarming. This coordination among honeybees in the same colony is remarkably similar to the concept of informational cascades. The multifractal geometry of cascades suggests that multifractal measures of individual honeybee activity might carry signatures of these colony-wide coordinations. The present work reanalyzes time stamps of entrances to and exits from the hive captured by radio-frequency identification (RFID) sensors reading RFID tags on individual bees. Indeed, both multifractal spectrum width for individual bees' inter-reading interval series and differences of those widths from surrogates significantly predicted not just whether the individual bee's hive had a mesh enclosure but also predicted the specific membership of individual bees in one of five colonies. The significant effects of multifractality in matching honeybee activity to type of colony and, further, matching individual honeybees to their exact home colony suggests that multifractality quantifies key features of the colony-wide interactions across many scales. This relevance of multifractality to predicting colony type or colony membership adds additional credence to the cascade metaphor for colony organization. Perhaps, multifractality provides a new tool for exploring the relationship between individual organisms and larger, more complex social behaviors.
Collapse
Affiliation(s)
- Nicole S Carver
- Department of Psychology, Grinnell College, 1116 8th Ave., Grinnell, Iowa 50112, USA
| | | |
Collapse
|
8
|
|
9
|
Zhdankin V, Uzdensky DA, Boldyrev S. Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence. PHYSICAL REVIEW LETTERS 2015; 114:065002. [PMID: 25723225 DOI: 10.1103/physrevlett.114.065002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 06/04/2023]
Abstract
Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.
Collapse
Affiliation(s)
- Vladimir Zhdankin
- Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA
| | - Dmitri A Uzdensky
- Center for Integrated Plasma Studies, Physics Department, UCB-390, University of Colorado, Boulder, Colorado 80309, USA
| | - Stanislav Boldyrev
- Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
10
|
Zhdankin V, Boldyrev S, Mason J, Perez JC. Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind. PHYSICAL REVIEW LETTERS 2012; 108:175004. [PMID: 22680875 DOI: 10.1103/physrevlett.108.175004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Indexed: 06/01/2023]
Abstract
Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.
Collapse
Affiliation(s)
- Vladimir Zhdankin
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|