1
|
Paul T, Maity A, Bairi P, Sahoo A, Maiti S, Singh M, Ghosh B, Banerjee R. Vortex flow induced self-assembly in CsPbI 3 rods leads to an improved electrical response towards external analytes. Dalton Trans 2024; 53:6333-6342. [PMID: 38488088 DOI: 10.1039/d4dt00013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We present a facile and versatile strategy for enabling CsPbI3 rods to self-assemble at an air-water interface. The CsPbI3 rods, which float at the air-water interface, align under the influence of the rotational flow field due to the vortex motion of a water subphase. The aligned CsPbI3 rods could be transferred onto various substrates without involving any sophisticated instrumentation. The temperature of the subphase, the concentration of the CsPbI3 aliquot, the rotational speed inducing vortex motion, and the lift-off position and angle of the substrate were optimized to achieve high coverage of the self-assembled rods of CsPbI3 on glass. The Rietveld refinement of the XRD profile confirms that the aligned CsPbI3 is in the pure orthorhombic phase ascribed to the Pnma space group. The hydrophilic carboxylic group of the oleic acid attaches to the Pb atoms of the halide perovskite rods, while their hydrophobic tails encapsulate the rods within their shell, creating a shielding barrier between the water and the perovskite surface like a reverse micelle. The aligned CsPbI3 rods exhibit a nearly 47-fold increment in current upon exposure to ammonia gas (amounting to 5.6 times higher sensitivity in ammonia sensing) compared to the non-aligned CsPbI3 rods.
Collapse
Affiliation(s)
- Tufan Paul
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, India.
| | - Avisek Maity
- S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - Partha Bairi
- Centre of Excellence for Composites, Ahmedabad Textile Industry's Research Association (ATIRA), Ahmedabad 380015, India
| | - Aditi Sahoo
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, India.
| | - Soumen Maiti
- St. Thomas College of Engineering & Technology Kolkata, 700023, India
| | - Manoj Singh
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, India.
| | - Barnali Ghosh
- S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - Rupak Banerjee
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, India.
- K C Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar, Palaj 382355, India
| |
Collapse
|
2
|
Makinde ZO, van der Heijden NJ, Clyde D, Nam S, Brothers PJ, Malmström J, Granville S, Domigan LJ, McGillivray DJ, Williams DE. Geometric Frustration and Long-Range Ordering Induced by Surface Pressure Oscillation in a Langmuir-Blodgett Monolayer of Magnetic Soft Spheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10150-10158. [PMID: 34384020 DOI: 10.1021/acs.langmuir.1c01577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a step toward the bottom-up construction of magnonic systems, this paper demonstrates the use of a large-amplitude surface-pressure annealing technique to generate 2-D order in a Langmuir-Blodgett monolayer of magnetic soft spheres comprising a surfactant-encapsulated polyoxometalate. The films show a distorted square lattice interpreted as due to geometric frustration caused by 2-D confinement between soft walls, one being the air interface and the other the aqueous subphase. Hysteresis and relaxation phenomena in the 2-D layers are suggested to be due to folding and time-dependent interpenetration of surfactant chains.
Collapse
Affiliation(s)
- Zainab O Makinde
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Nadine J van der Heijden
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Daniel Clyde
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Seong Nam
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Penelope J Brothers
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
- Research School of Chemistry, The Australian National University, Canberra ACT 2601, Australia
| | - Jenny Malmström
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
- Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds St., Auckland 1010, New Zealand
| | - Simon Granville
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
- Robinson Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Laura J Domigan
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
- Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds St., Auckland 1010, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - David E Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
3
|
Bu W, Lin B, Banerjee R. Influence of Substitutional Groups on the Ordering and Crystallization of Amphiphilic Silsesquioxanes at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6232-6242. [PMID: 33971096 DOI: 10.1021/acs.langmuir.1c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report on the surface ordering and crystallization sequences in differently organic-substituted amphiphilic polyhedral silsesquioxane (POSS) variants induced by regulated compression at the air-water interface. Such molecular systems floating at the interface serve as a model system to study dynamic crystallization mediated by weak interactions. In situ grazing incidence X-ray scattering (GIXS) measurements, performed at a synchrotron X-ray source using a liquid surface diffractometer and corroborated with Brewster angle microscopy, revealed transformations for the different POSS variants (viz. trisilanol isobutyl POSS (TBPOSS), trisilanol cyclohexyl POSS (TCHPOSS), disilanol octaisobutly POSS (DOBPOSS), and trisilanol isooctyl POSS (TOPOSS)) from a weakly correlated monolayer structure to appreciably different structural and crystalline phases in various packing schemes. GIXS measurements revealed a stable nature of the crystallization of DOBPOSS, varying degrees of metastable crystallization for TCHPOSS and TBPOSS, and complete absence of crystalline phase in TOPOSS molecules. Incidentally, for all POSS variants showing crystalline phases, the motifs always assembled in a triclinic lattice with P1̅ symmetry. For the metastable crystals, preferential surface ordering of the crystallites promotes selective crystalline planes to exhibit preferred tilt angles with respect to the interface. The structural transformations of the differently substituted POSS molecules and their variations therein are attributed to the changing balance of the hydrophobic vs hydrophilic interaction in the layers, which is determined by the anisotropic shape and distribution of substitutional groups over the nanosized core cage of the monomer, steric interaction between nearest dimeric neighbors, as well as the in-plane and out-of-plane assembly of the overlayers.
Collapse
Affiliation(s)
- Wei Bu
- NSF's ChemMatCARS, University of Chicago, Chicago, Illinois 60637, United States
| | - Binhua Lin
- NSF's ChemMatCARS, University of Chicago, Chicago, Illinois 60637, United States
| | - Rupak Banerjee
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355 Gujarat, India
| |
Collapse
|
4
|
Boucheron LS, Stanley JT, Dai Y, You SS, Parzyck CT, Narayanan S, Sandy AR, Jiang Z, Meron M, Lin B, Shpyrko OG. Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers. Phys Rev E 2018; 97:052803. [PMID: 29906983 DOI: 10.1103/physreve.97.052803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 11/07/2022]
Abstract
We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1) to stretched (<1), indicating that the monolayer underwent a stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.
Collapse
Affiliation(s)
- Leandra S Boucheron
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - Jacob T Stanley
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - Yeling Dai
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - Siheng Sean You
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Christopher T Parzyck
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratories, Argonne, Illinois 60439, USA
| | - Alec R Sandy
- Advanced Photon Source, Argonne National Laboratories, Argonne, Illinois 60439, USA
| | - Zhang Jiang
- Advanced Photon Source, Argonne National Laboratories, Argonne, Illinois 60439, USA
| | - Mati Meron
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Binhua Lin
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Oleg G Shpyrko
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
5
|
Giner-Casares JJ, Reguera J. Directed self-assembly of inorganic nanoparticles at air/liquid interfaces. NANOSCALE 2016; 8:16589-16595. [PMID: 27722594 DOI: 10.1039/c6nr05054a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Inorganic nanoparticles (NPs) appear as the forefront functional structure in nanotechnology. The preparation of functional materials based on inorganic NPs requires their assembly onto well-defined structures. Within this context, self-assembly at air-liquid interfaces is probably the best candidate for a universal procedure for active materials composed of assembled NPs. The detailed in situ mechanism of the lateral self-assembly and vertical organization of NPs at air-liquid interfaces is still unknown despite its extended use. The most common and promising methods for addressing this open issue are reviewed herein. The self-assembled films can be used in situ or further be transferred to solid substrates as the main constituents of novel functional materials. Plasmonic NPs at interfaces are highly interesting, given the broad range of applications of the plasmonic field, and will be discussed more in detail.
Collapse
Affiliation(s)
- Juan J Giner-Casares
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain.
| | - Javier Reguera
- CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain. and Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain and Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 50018 Aragon, Spain
| |
Collapse
|
6
|
Stanley J, Dai Y, Boucheron L, Lin B, Meron M, Shpyrko O. Novel comparison of microscopy and diffraction techniques on the structure of iron oxide nanoparticle monolayers transferred by Langmuir-Schaefer method. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:063704. [PMID: 26133841 DOI: 10.1063/1.4922369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Iron oxide nanoparticles undergo self-assembly into well-ordered monolayer films of macroscopic size at the air-water interface. This self-assembly process is the result of the van der Waals forces between the constituent particles. For roughly spherical particles, this monolayer is a 2D hexagonal close packed lattice. With Grazing Incidence X-Ray Diffraction (GID), one can obtain global statistical information about the film's spacing and correlation length. Herein, we demonstrate that comparable structural information can be obtained by a novel Fourier transform analysis method applied to Scanning Electron Microscopy (SEM) images taken of the film after it has been transferred to a silicon substrate. This consists of using numerical methods to isolate the lattice structure of the monolayer in the SEM image to which a 2D discrete Fourier Transform is applied and the result integrated. This results in Bragg peak information akin to that obtained from GID, whose structure shows the same hexagonal close packed lattice with similar spacing and of greater peak contrast. This analysis technique may prove to be a suitable alternative or compliment to GID for many applications.
Collapse
Affiliation(s)
- Jacob Stanley
- University of California, San Diego, La Jolla, California 92093, USA
| | - Yeling Dai
- University of California, San Diego, La Jolla, California 92093, USA
| | - Leandra Boucheron
- University of California, San Diego, La Jolla, California 92093, USA
| | - Binhua Lin
- Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637, USA
| | - Mati Meron
- Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637, USA
| | - Oleg Shpyrko
- University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
7
|
Reguera J, Ponomarev E, Geue T, Stellacci F, Bresme F, Moglianetti M. Contact angle and adsorption energies of nanoparticles at the air-liquid interface determined by neutron reflectivity and molecular dynamics. NANOSCALE 2015; 7:5665-73. [PMID: 25744221 DOI: 10.1039/c5nr00620a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Understanding how nanomaterials interact with interfaces is essential to control their self-assembly as well as their optical, electronic, and catalytic properties. We present here an experimental approach based on neutron reflectivity (NR) that allows the in situ measurement of the contact angles of nanoparticles adsorbed at fluid interfaces. Because our method provides a route to quantify the adsorption and interfacial energies of the nanoparticles in situ, it circumvents problems associated with existing indirect methods, which rely on the transport of the monolayers to substrates for further analysis. We illustrate the method by measuring the contact angle of hydrophilic and hydrophobic gold nanoparticles, coated with perdeuterated octanethiol (d-OT) and with a mixture of d-OT and mercaptohexanol (MHol), respectively. The contact angles were also calculated via atomistic molecular dynamics (MD) computations, showing excellent agreement with the experimental data. Our method opens the route to quantify the adsorption of complex nanoparticle structures adsorbed at fluid interfaces featuring different chemical compositions.
Collapse
Affiliation(s)
- Javier Reguera
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
8
|
Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface. Sci Rep 2015; 5:8497. [PMID: 25687953 PMCID: PMC4330523 DOI: 10.1038/srep08497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/21/2015] [Indexed: 11/25/2022] Open
Abstract
We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initial monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.
Collapse
|
9
|
Uysal A, Stripe B, Lin B, Meron M, Dutta P. Assembly of amorphous clusters under floating monolayers: a comparison of in situ and ex situ techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14361-14368. [PMID: 24164244 DOI: 10.1021/la402682r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report synchrotron X-ray scattering studies of biomimetic crystallization of hydroxyapatite (the primary constituent of bone), using monolayers of fatty acid molecules floating on simulated body fluid (SBF) as well as aqueous solutions of calcium phosphate. A ∼10 Å thick film of amorphous material is observed to form immediately at the molecular monolayer, consistent with the proposed formation of "Posner clusters". This layer becomes denser but not significantly thicker as the subphase concentration and the temperature approach physiological conditions. The amorphous films do not crystallize within 24 h, in contrast to prior reports of more rapid crystallization using electron microscopy on ex situ samples. However, crystallization occurs almost immediately after our films are transferred onto solid substrates. These results illustrate the importance of in situ measurements for model biomineralization experiments.
Collapse
Affiliation(s)
- Ahmet Uysal
- Department of Physics and Astronomy, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | | | |
Collapse
|
10
|
Vegso K, Siffalovic P, Majkova E, Jergel M, Benkovicova M, Kocsis T, Weis M, Luby S, Nygård K, Konovalov O. Nonequilibrium phases of nanoparticle Langmuir films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10409-10414. [PMID: 22724517 DOI: 10.1021/la301764t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report on an in-situ observation of the colloidal silver nanoparticle self-assembly into a close-packed monolayer at the air/water interface followed by a 2D to 3D transition. Using the fast tracking GISAXS technique, we were able to observe the immediate response to the compression of the self-assembled nanoparticle layer at the air/water interface and to identify all relevant intermediate stages including those far from the equilibrium. In particular, a new nonequilibrium phase before the monolayer collapse via the 2D to 3D transition was found that is inaccessible by the competing direct space imaging techniques such as the scanning and transmission electron microscopies due to the high water vapor pressure and surface tension.
Collapse
Affiliation(s)
- Karol Vegso
- Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | |
Collapse
|