Direct observation of impact propagation and absorption in dense colloidal monolayers.
Proc Natl Acad Sci U S A 2017;
114:12150-12155. [PMID:
29087329 PMCID:
PMC5699069 DOI:
10.1073/pnas.1712266114]
[Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-particle characterization of the impact response has unveiled design principles to focus and control stress propagation in macroscopic granular crystalline arrays. We demonstrate that similar principles apply to aqueous monolayers of microparticles excited by localized mechanical pulses. By inducing extreme local deformation rates and tracking the motion of each particle with velocities that reach up to few meters per second, we reveal that a regime of elastic collisions, typically forbidden due to overdamping, becomes accessible. This provides insights on the stress propagation and energy absorption of dense suspensions upon fast deformation rates.
Dense colloidal suspensions can propagate and absorb large mechanical stresses, including impacts and shocks. The wave transport stems from the delicate interplay between the spatial arrangement of the structural units and solvent-mediated effects. For dynamic microscopic systems, elastic deformations of the colloids are usually disregarded due to the damping imposed by the surrounding fluid. Here, we study the propagation of localized mechanical pulses in aqueous monolayers of micron-sized particles of controlled microstructure. We generate extreme localized deformation rates by exciting a target particle via pulsed-laser ablation. In crystalline monolayers, stress propagation fronts take place, where fast-moving particles (V approximately a few meters per second) are aligned along the symmetry axes of the lattice. Conversely, more viscous solvents and disordered structures lead to faster and isotropic energy absorption. Our results demonstrate the accessibility of a regime where elastic collisions also become relevant for suspensions of microscopic particles, behaving as “billiard balls” in a liquid, in analogy with regular packings of macroscopic spheres. We furthermore quantify the scattering of an impact as a function of the local structural disorder.
Collapse