1
|
Bohinc K, Špadina M, Reščič J, Shimokawa N, Spada S. Influence of Charge Lipid Head Group Structures on Electric Double Layer Properties. J Chem Theory Comput 2021; 18:448-460. [PMID: 34937343 PMCID: PMC8757465 DOI: 10.1021/acs.jctc.1c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this study we
derived a model for a multicomponent lipid monolayer
in contact with an aqueous solution by means of a generalized classical
density functional theory and Monte Carlo simulations. Some of the
important biological lipid systems were studied as monolayers composed
of head groups with different shapes and charge distributions. Starting
from the free energy of the system, which includes the electrostatic
interactions, additional internal degrees of freedom are included
as positional and orientational entropic contributions to the free
energy functional. The calculus of variation was used to derive Euler–Lagrange
equations, which were solved numerically by the finite element method.
The theory and Monte Carlo simulations predict that there are mainly
two distinct regions of the electric double layer: (1) the interfacial
region, with thickness less than or equal to the length of the fully
stretched conformation of the lipid head group, and (2) the outside
region, which follows the usual screening of the interface. In the
interfacial region, the electric double layer is strongly perturbed,
and electrostatic profiles and ion distributions have functionality
distinct to classical mean-field theories. Based purely on Coulomb
interactions, the theory suggests that the dominant effect on the
lipid head group conformation is from the charge density of the interface
and the structured lipid mole fraction in the monolayer, rather than
the salt concentration in the system.
Collapse
Affiliation(s)
- Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mario Špadina
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jurij Reščič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Naofumi Shimokawa
- Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Simone Spada
- National Institute of Oceanography and Applied Geophysics - OGS, 34010 Trieste, Italy
| |
Collapse
|
2
|
de Oliveira FO, Tamashiro MN. Phase Transitions in Phospholipid Monolayers: Theory Versus Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3848-3858. [PMID: 30681859 DOI: 10.1021/acs.langmuir.8b03244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Doniach lattice gas (DLG) represents a ternary-mixture statistical model, whose components, water molecules (w), ordered-chain lipids (o), and disordered-chain lipids (d)-the latter carrying a high degenerescence ω ≫ 1-are located at each site of a two-dimensional lattice. The DLG model was introduced to describe phospholipid Langmuir films at the air-water interface and can be mapped into a spin-1 model, with the single-site states s i = 0, +1, and -1 representing the three types of molecules in the system (w, o, and d), respectively. The model allows lipid-density fluctuations and has been analyzed at the mean-field approximation (Guidi, H. S.; Henriques, V. B. Phys. Rev. E 2014, 90, 052705) as well as at the pair approximation (de Oliveira, F. O.; Tamashiro, M. N. Phys. Rev. E 2019, 99, 012147). In this work, we focus on performing an explicit comparison of the theoretical predictions obtained for the DLG model at the pair approximation with isothermal monolayer compression experiments (Nielsen, L. K.; Bjørnholm, T.; Mouritsen, O. G. Langmuir 2007, 23, 11684) for the two most commonly studied saturated zwitterionic phospholipids, DMPC (1,2-dimyristoyl- sn-glycero-3-phosphocholine) and DPPC (1,2-dipalmitoyl- sn-glycero-3-phosphocholine). The model parameters obtained by fitting to the experimental data yield phase diagrams that are qualitatively consistent with the observed phase transitions on DMPC and DPPC monolayers, with the absence of a low-density gas phase. Quantitative agreement, however, was less significant partially because of the challenging reproducibility of Langmuir monolayer compression experiments, claimed in the literature to be influenced by kinetic effects.
Collapse
Affiliation(s)
- F O de Oliveira
- Instituto de Física "Gleb Wataghin" , Universidade Estadual de Campinas (UNICAMP) , Rua Sérgio Buarque de Holanda, 777, Cidade Universitária , Campinas SP 13083-859 , Brazil
| | - M N Tamashiro
- Instituto de Física "Gleb Wataghin" , Universidade Estadual de Campinas (UNICAMP) , Rua Sérgio Buarque de Holanda, 777, Cidade Universitária , Campinas SP 13083-859 , Brazil
| |
Collapse
|
3
|
de Oliveira FO, Tamashiro MN. Phase transitions in phospholipid monolayers: Statistical model at the pair approximation. Phys Rev E 2019; 99:012147. [PMID: 30780234 DOI: 10.1103/physreve.99.012147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 06/09/2023]
Abstract
A Langmuir film, consisting of a phospholipid monolayer at the air-water interface, was modeled as a two-dimensional lattice gas corresponding to a ternary mixture of water molecules (w), ordered-chain lipids (o), and disordered-chain lipids (d). The statistical problem is formulated in terms of a spin-1 model, in which the disordered-chain lipid states possess a high degenerescence ω≫1, and was termed Doniach lattice gas (DLG). Motivated by some open questions in the analysis of the DLG model at the mean-field approximation (MFA) [Phys. Rev. E 90, 052705 (2014)PLEEE81539-375510.1103/PhysRevE.90.052705], we have reconsidered it at the pair-approximation level by solving the model on a Cayley tree of coordination z. The attractors of the corresponding discrete-map problem are associated with the thermodynamic solutions on the Bethe lattice (the central region of an asymptotically infinite Cayley tree). To check the thermodynamic stability of the possible phases, the grand-potential density was obtained by the method proposed by Gujrati [Phys. Rev. Lett. 74, 809 (1995)PRLTAO0031-900710.1103/PhysRevLett.74.809]. In general, the previous MFA results are confirmed at the pair-approximation level, but a novel staggered phase, overlooked in the MFA analysis, was found when the condition ε_{wd}>1/2(ε_{ww}+ε_{dd}) is satisfied, where ε_{xy} represents the nearest-neighbor intermolecular interactions between single-site states x and y. Model parameters obtained by fitting to experimental data for the two most commonly studied zwitterionic phospholipids, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), yield phase diagrams consistent with the phase transitions observed on Langmuir films of the same lipids under isothermal compression, which present a liquid-condensed to a liquid-expanded first-order transition line ending at a critical point.
Collapse
Affiliation(s)
- F O de Oliveira
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas (UNICAMP), Rua Sérgio Buarque de Holanda, 777, Cidade Universitária, Campinas SP, 13083-859, Brazil
| | - M N Tamashiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas (UNICAMP), Rua Sérgio Buarque de Holanda, 777, Cidade Universitária, Campinas SP, 13083-859, Brazil
| |
Collapse
|
4
|
Shore JD, Thurston GM. Charge-regulation phase transition on surface lattices of titratable sites adjacent to electrolyte solutions: An analog of the Ising antiferromagnet in a magnetic field. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062123. [PMID: 26764648 PMCID: PMC5830140 DOI: 10.1103/physreve.92.062123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 06/05/2023]
Abstract
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √74 lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (pH-pK,W) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions.
Collapse
Affiliation(s)
- Joel D Shore
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623-5603, USA
| | - George M Thurston
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623-5603, USA
| |
Collapse
|
5
|
Guidi HS, Henriques VB. Lattice solution model for order-disorder transitions in membranes and Langmuir monolayers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052705. [PMID: 25493814 DOI: 10.1103/physreve.90.052705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 06/04/2023]
Abstract
Lipid monolayers and bilayers have been used as experimental models for the investigation of membrane thermal transitions. The main transition takes place near ambient temperatures for several lipids and reflects the order-disorder transition of lipid hydrocarbonic chains, which is accompanied by a surface density gap. Equivalence between the transitions in the two systems has been argued by several authors. The two-state statistical model adopted by numerous authors for different properties of the membrane, such as permeability, diffusion, and mixture or insertion of cholesterol or protein, is inadequate for the description of charged membranes, since it lacks a proper description of surface density. We propose a lattice solution model which adds interactions with water molecules to lipid-lipid interactions and obtain its thermal properties under a mean-field approach. Density variations, although concomitant with chain order variations, are independent of the latter. The model presents both chain order and gas-liquid transitions, and extends the range of applicability of previous models, yielding Langmuir isotherms in the full range of pressures and areas.
Collapse
Affiliation(s)
- Henrique S Guidi
- Instituto de Física, Universidade de São Paulo, P.O. Box 66318, 05314-970 São Paulo, SP, Brazil and Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Vera B Henriques
- Instituto de Física, Universidade de São Paulo, P.O. Box 66318, 05314-970 São Paulo, SP, Brazil
| |
Collapse
|
6
|
Henriques VB, Germano R, Lamy MT, Tamashiro MN. Phase transitions and spatially ordered counterion association in ionic-lipid membranes: theory versus experiment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13130-13143. [PMID: 21848301 DOI: 10.1021/la202302x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Aqueous dispersions of phosphatidylglycerol (PG) lipids may present an anomalous chain-melting transition at low ionic strengths, as seen by different experimental techniques such as calorimetry or light scattering. The anomaly disappears at high ionic strengths or for longer acyl-chain lengths. In this article, we use a statistical model for the bilayer that distinguishes both lipid chain and headgroup states in order to compare model and experimental thermotropic and electrical properties. The effective van der Waals interactions among hydrophobic chains compete with the electrostatic repulsions between polar headgroups, which may be ionized (counterion dissociated) or electrically neutral (associated with counterions). Electric degrees of freedom introduce new thermotropic charge-ordered phases in which headgroup charges may be spatially ordered, depending on the electrolyte ionic strength, introducing a new rationale for experimental data on PGs. The thermal phases presented by the model for different chain lengths, at fixed ionic strength, compare well with an experimental phase diagram constructed on the basis of differential scanning calorimetry profiles. In the case of dispersions of DMPG (dimyristoyl phosphatidylglycerol) with added monovalent salt, the model properties reproduce the main features displayed by data from differential scanning calorimetry as well as the characteristic profile for the degree of ionization of the bilayer surface across the anomalous transition region, obtained from the theoretical interpretation of electrokinetic (conductivity and electrophoretic mobility) measurements.
Collapse
Affiliation(s)
- V B Henriques
- Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05314-970 São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|