1
|
Nakane T, Sasaki T. Thickness Dependence of Segmental Dynamics in Free-Standing Thin Films Predicted by a Dynamically Correlated Network Model. J Phys Chem B 2023. [PMID: 37201178 DOI: 10.1021/acs.jpcb.3c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The anomalous dynamics and glass transition behaviors of supercooled liquids under nanoconfinement, such as ultrathin polymer films, have attracted much attention in recent decades. However, a complete elucidation of this mechanism has not yet been achieved. For the dynamics of bulk materials without confinement, we previously proposed a dynamically correlated network (DCN) model, which was found to agree well with the experimental data. The model assumes that segments with thermal fluctuations are dynamically correlated to their neighbors to form string-like clusters, which eventually grow into networks as temperature decreases. In this study, we applied the DCN model to nanoconfined free-standing films by using a simple cubic lattice sandwiched between two free surface layers consisting of virtual "uncorrelated" segments. The average size of DCNs at lower temperatures decreased with decreasing thickness because of confinement. This trend was associated with a decrease in the percolation temperature at which the size of DCN diverges. It was also revealed that the fractal dimension of the generated DCNs exhibits a peak with respect to temperature. The segmental relaxation time for free-standing polystyrene films was evaluated, and the predicted thickness dependence of the glass transition temperature qualitatively agreed with the experimental data. The results suggest that the concept of DCN is compatible with the dynamics of free-standing thin films.
Collapse
Affiliation(s)
- Tatsuki Nakane
- Department of Materials Science and Engineering, University of Fukui, Fukui 9108507, Japan
| | - Takashi Sasaki
- Department of Materials Science and Engineering, University of Fukui, Fukui 9108507, Japan
| |
Collapse
|
2
|
Song Z, White RP, Lipson JEG, Napolitano S. Experimental and Modeling Comparison of the Dynamics of Capped and Freestanding Poly(2-chlorostyrene) Films. ACS Macro Lett 2022; 11:91-95. [PMID: 35574787 DOI: 10.1021/acsmacrolett.1c00674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proximity to a nonrepulsive wall is commonly considered to cause slower dynamics, which should lead to greater relaxation times for capped thin polymer films than for bulk melts. To the contrary, here we demonstrate that Al-capped films of poly(2-chlorostyrene) exhibit enhanced dynamics with respect to the bulk, similar to analogous freestanding films. To quantitatively resolve the impact of interfaces on whole film dynamics, we analyzed the experimental data via the Cooperative Free Volume rate model. We found that the interfacial region adjacent to a cap contains an excess of free volume (relative to the bulk) about half of that proximate to a free surface. Employing a useful analogy between confinement and pressure effects, we estimated that the effect of capping an 18 nm freestanding film would be equivalent to applying a pressure increase of 19 MPa.
Collapse
Affiliation(s)
- Zijian Song
- Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Ronald P. White
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jane E. G. Lipson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Simone Napolitano
- Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
3
|
White RP, Lipson JEG. The dynamics of freestanding films: predictions for poly(2-chlorostyrene) based on bulk pressure dependence and thoughtful sample averaging. SOFT MATTER 2021; 17:9755-9764. [PMID: 34647951 DOI: 10.1039/d1sm01175h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper we model the segmental relaxation in poly(2-chlorostyrene) 18 nm freestanding films, using only data on bulk samples to characterize the system, and predict film relaxation times (τ) as a function of temperature that are in semi-quantitative agreement with film data. The ability to translate bulk characterization into film predictions is a direct result of our previous work connecting the effects of free surfaces in films with those of changing pressure in the bulk. Our approach combines the Locally Correlated Lattice (LCL) equation of state for prediction of free volume values (Vfree) at any given density (ρ), which are then used in the Cooperative Free Volume (CFV) rate model to predict τ(T, Vfree). A key feature of this work is that we calculate the locally averaged density profile as a function of distance from the surface, ρav(z), using the CFV-predicted lengthscale, Lcoop(z), over which rearranging molecular segments cooperate. As we have shown in the past, ρav(z) is significantly broader than the localized profile, ρ(z), which translates into a relaxation profile, τ(z), exhibiting a breadth that mirrors experimental and simulated results. In addition, we discuss the importance of averaging the log of position dependent relaxation times across a film sample (〈log τ(z)〉), as opposed to averaging the relaxation times, themselves, in order to best approximate a whole sample-averaged value that can be directly compared to experiment.
Collapse
Affiliation(s)
- Ronald P White
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - Jane E G Lipson
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
4
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Ghanekarade A, Phan AD, Schweizer KS, Simmons DS. Nature of dynamic gradients, glass formation, and collective effects in ultrathin freestanding films. Proc Natl Acad Sci U S A 2021; 118:e2104398118. [PMID: 34326262 PMCID: PMC8346796 DOI: 10.1073/pnas.2104398118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular, polymeric, colloidal, and other classes of liquids can exhibit very large, spatially heterogeneous alterations of their dynamics and glass transition temperature when confined to nanoscale domains. Considerable progress has been made in understanding the related problem of near-interface relaxation and diffusion in thick films. However, the origin of "nanoconfinement effects" on the glassy dynamics of thin films, where gradients from different interfaces interact and genuine collective finite size effects may emerge, remains a longstanding open question. Here, we combine molecular dynamics simulations, probing 5 decades of relaxation, and the Elastically Cooperative Nonlinear Langevin Equation (ECNLE) theory, addressing 14 decades in timescale, to establish a microscopic and mechanistic understanding of the key features of altered dynamics in freestanding films spanning the full range from ultrathin to thick films. Simulations and theory are in qualitative and near-quantitative agreement without use of any adjustable parameters. For films of intermediate thickness, the dynamical behavior is well predicted to leading order using a simple linear superposition of thick-film exponential barrier gradients, including a remarkable suppression and flattening of various dynamical gradients in thin films. However, in sufficiently thin films the superposition approximation breaks down due to the emergence of genuine finite size confinement effects. ECNLE theory extended to treat thin films captures the phenomenology found in simulation, without invocation of any critical-like phenomena, on the basis of interface-nucleated gradients of local caging constraints, combined with interfacial and finite size-induced alterations of the collective elastic component of the structural relaxation process.
Collapse
Affiliation(s)
- Asieh Ghanekarade
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL 33620
| | - Anh D Phan
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam;
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, IL 61801;
- Department of Chemistry, University of Illinois, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801
| | - David S Simmons
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL 33620;
| |
Collapse
|
6
|
Ishikawa Y, Maruyama S, Matsumoto Y. In situ vacuum ellipsometry approach to investigation of glass transition behavior in ionic liquid thin films. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
White RP, Lipson JEG. To Understand Film Dynamics Look to the Bulk. PHYSICAL REVIEW LETTERS 2020; 125:058002. [PMID: 32794834 DOI: 10.1103/physrevlett.125.058002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We show that shifts in dynamics of confined systems relative to that of the bulk material originate in the properties of bulk alone, and exhibit the same form of behavior as when different bulk isobars are compared. For bulk material, pressure-dependent structural relaxation times follow τ(T,V)∝exp[f(T)×g(V)]. When two states (isobars) of the material, "1" and "2", are compared at the same temperature this leads to a form τ_{2}∝τ_{1}^{c}, where c=g[V_{2}(T)]/g[V_{1}(T)]. Using equation of state analysis and two models for P-dependent dynamics, we show that c is approximately T independent, and that it can be very simply expressed in terms of either the (free) volume above the close packed state (V_{free}) or the activation energy for cooperative motion. The effect of changing state through a shift in pressure (P_{1} to P_{2}) is thus mechanistically traceable to cooperativity changing with density, through V_{free}. The connection with confined dynamics follows when 1 and 2 are taken as bulk and film at ambient P, differing in density only due to the film surface. The general form for τ(T,V) also illuminates why samples in different states (film vs bulk, high P vs low) trend toward the same relaxation behavior at high T.
Collapse
Affiliation(s)
- Ronald P White
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Jane E G Lipson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
8
|
Panagopoulou A, Rodríguez-Tinoco C, White RP, Lipson JEG, Napolitano S. Substrate Roughness Speeds Up Segmental Dynamics of Thin Polymer Films. PHYSICAL REVIEW LETTERS 2020; 124:027802. [PMID: 32004047 DOI: 10.1103/physrevlett.124.027802] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 06/10/2023]
Abstract
We show that the segmental mobility of thin films of poly(4-chlorostyrene) prepared under nonequilibrium conditions gets enhanced in the proximity of rough substrates. This trend is in contrast to existing treatments of roughness which conclude it is a source of slower dynamics, and to measurements of thin films of poly(2-vinylpiridine), whose dynamics is roughness invariant. Our experimental evidence indicates the faster interfacial dynamics originate from a reduction in interfacial density, due to the noncomplete filling of substrate asperities. Importantly, our results agree with the same scaling that describes the density dependence of bulk materials, correlating segmental mobility to a term exponential in the specific volume, and with empirical relations linking an increase in glass transition temperature to larger interfacial energy.
Collapse
Affiliation(s)
- Anna Panagopoulou
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| | - Cristian Rodríguez-Tinoco
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| | - Ronald P White
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Jane E G Lipson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| |
Collapse
|
9
|
Ooe M, Miyata K, Yoshioka J, Fukao K, Nemoto F, Yamada NL. Direct observation of mobility of thin polymer layers via asymmetric interdiffusion using neutron reflectivity measurements. J Chem Phys 2019; 151:244905. [PMID: 31893884 DOI: 10.1063/1.5132768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we investigated the diffusion dynamics at the interface between deuterated poly(methyl methacrylate) (d-PMMA) and protonated poly(methyl methacrylate) (h-PMMA) in two-layered thin films of d- and h-PMMA layers via neutron reflectivity (NR) measurements during isothermal annealing above the glass transition temperature Tg. When Tg of d-PMMA was higher than that of h-PMMA, the d-PMMA layer thickness increased with increasing annealing time ta and, simultaneously, the h-PMMA layer thickness decreased. However, the opposite ta dependence of the layer thicknesses was observed, if the Tg of d-PMMA was decreased by the increase in the fraction of the low-molecular weight d-PMMA: With increasing ta, the d-PMMA layer thickness decreased and the h-PMMA layer thickness increased when Tg of d-PMMA was lower than that of h-PMMA. This change in the ta dependence of the layer thickness was related to the change in the mobility of the d-PMMA layer accompanied by the change in the Tg value of d-PMMA. With the decrease in the d-PMMA layer thickness from 49 nm to 13 nm, when the h-PMMA layer thickness was maintained, the ta dependence of the layer thickness changed and the mobility of the d-PMMA layer dramatically increased. These results suggest that the mobility of thin polymer films can be determined by the observation of interfacial dynamics via NR measurements.
Collapse
Affiliation(s)
- Megumi Ooe
- Department of Physics, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu 525-8577 Japan
| | - Kairi Miyata
- Department of Physics, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu 525-8577 Japan
| | - Jun Yoshioka
- Department of Physics, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu 525-8577 Japan
| | - Koji Fukao
- Department of Physics, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu 525-8577 Japan
| | - Fumiya Nemoto
- Neutron Science Division, Institute for Materials Structure Science, High Energy Acceleration Research Organization, 203-1 Shirakata, Tokai, Naka 319-1106, Japan
| | - Norifumi L Yamada
- Neutron Science Division, Institute for Materials Structure Science, High Energy Acceleration Research Organization, 203-1 Shirakata, Tokai, Naka 319-1106, Japan
| |
Collapse
|
10
|
Sasaki T, Ito Y, Sasai T, Irie S. Glass transition of a polystyrene surface as detected via two-dimensional diffusion of Au atoms during physical vapor deposition. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Debot A, Tripathi P, Napolitano S. Solution filtering affects the glassy dynamics of spincoated thin films of poly(4-chlorostyrene). THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:102. [PMID: 31396728 DOI: 10.1140/epje/i2019-11865-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
We investigated the impact of sample preparation on the glassy dynamics of thin films of poly(4-chlorostyrene), a polymer whose molecular mobility is particularly sensitive to changes in the specific volume. Samples were obtained by spincoating, the technique most commonly used to prepare thin organic layers, which consists of pouring dilute polymer solutions onto a plate rotating at a high rate. Our experimental results demonstrate that filtering the solutions before spincoating affects the value of the segmental relaxation time of the as-prepared films. Thin polymer layers obtained via filtered solutions show accelerated segmental dynamics upon confinement at the nanoscale level, once below 100nm, while the samples obtained via unfiltered solutions exhibit bulk-like dynamics down to 15-20nm. We analyzed these results by means of the cooperative free volume rate model, considering a larger free volume content in thin films obtained via filtered solutions. The validity of the model predictions was finally verified by measurements of irreversible adsorption, confirming a larger adsorbed amount, corresponding to a higher specific volume, in the case of samples obtained via unfiltered solutions. Our results prove that filtering is a crucial step in the preparation of thin films, and it could be used to switch on and off nanoconfinement effects.
Collapse
Affiliation(s)
- Alice Debot
- Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Pragya Tripathi
- Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Simone Napolitano
- Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
12
|
Sasaki T, Nakane T, Sato A. Segmental dynamics of free-standing and supported polymer thin films predicted from a surface-controlled model. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Qian Z, Cao Z, Galuska L, Zhang S, Xu J, Gu X. Glass Transition Phenomenon for Conjugated Polymers. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900062] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhiyuan Qian
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Zhiqiang Cao
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Luke Galuska
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Song Zhang
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Jie Xu
- Argonne National Laboratory Lemont IL 60439 USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| |
Collapse
|
14
|
Burroughs MJ, Christie D, Gray LAG, Chowdhury M, Priestley RD. 21st Century Advances in Fluorescence Techniques to Characterize Glass‐Forming Polymers at the Nanoscale. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mary J. Burroughs
- Department of Chemical and Biological Engineering Princeton University Princeton NJ 08544 USA
| | - Dane Christie
- Department of Chemical and Biological Engineering Princeton University Princeton NJ 08544 USA
| | - Laura A. G. Gray
- Department of Chemical and Biological Engineering Princeton University Princeton NJ 08544 USA
| | - Mithun Chowdhury
- Department of Chemical and Biological Engineering Princeton University Princeton NJ 08544 USA
| | - Rodney D. Priestley
- Department of Chemical and Biological Engineering Princeton Institute for the Science and Technology of Materials Princeton University Princeton NJ 08544 USA
| |
Collapse
|
15
|
Panagopoulou A, Napolitano S. Irreversible Adsorption Governs the Equilibration of Thin Polymer Films. PHYSICAL REVIEW LETTERS 2017; 119:097801. [PMID: 28949580 DOI: 10.1103/physrevlett.119.097801] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate that the enhanced segmental motion commonly observed in spin cast thin polymer films is a nonequilibrium phenomenon. In the presence of nonrepulsive interfaces, prolonged annealing in the liquid state allows, in fact, recovering bulk segmental mobility. Our measurements prove that, while the fraction of unrelaxed chains increases upon nanoconfinement, the dynamics of equilibration is almost unaffected by the film thickness. We show that the rate of equilibration of nanoconfined chains does not depend on the structural relaxation process but on the feasibility to form an adsorbed layer. We propose that the equilibration of the thin polymer melts is driven by the slow relaxation of interfacial chains upon irreversible adsorption on the confining walls.
Collapse
Affiliation(s)
- Anna Panagopoulou
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bâtiment NO, Bruxelles 1050, Belgium
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bâtiment NO, Bruxelles 1050, Belgium
| |
Collapse
|
16
|
Xu J, Zhang Y, Zhou H, Hong Y, Zuo B, Wang X, Zhang L. Probing the Utmost Distance of Polymer Dynamics Suppression by a Substrate by Investigating the Diffusion of Fluorinated Tracer-Labeled Polymer Chains. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jianquan Xu
- Department of Chemistry,
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yizhi Zhang
- Department of Chemistry,
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hao Zhou
- Department of Chemistry,
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yongming Hong
- Department of Chemistry,
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Biao Zuo
- Department of Chemistry,
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xinping Wang
- Department of Chemistry,
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Li Zhang
- Department of Chemistry,
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
17
|
Hayashi T, Segawa K, Sadakane K, Fukao K, Yamada NL. Interfacial interaction and glassy dynamics in stacked thin films of poly(methyl methacrylate). J Chem Phys 2017; 146:203305. [PMID: 28571347 DOI: 10.1063/1.4974835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neutron reflectivity and dielectric permittivity of alternately stacked thin films of protonated and deuterated poly(methyl methacrylate) were measured to elucidate a correlation between the time evolution of the interfacial structure and the segmental dynamics in the stacked thin polymer films during isothermal annealing above the glass transition temperature. The roughness at the interface between two thin layers increases with the annealing time, whereas the relaxation rate and strength of the α-process decrease with an increase in the annealing time. A strong correlation between the time evolution of the interfacial structure and the dynamics of the α-process during annealing could be observed using neutron reflectivity and dielectric relaxation measurements.
Collapse
Affiliation(s)
- Tatsuhiko Hayashi
- Department of Physics, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu 525-8577, Japan
| | - Kenta Segawa
- Department of Physics, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu 525-8577, Japan
| | - Koichiro Sadakane
- Department of Physics, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu 525-8577, Japan
| | - Koji Fukao
- Department of Physics, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu 525-8577, Japan
| | - Norifumi L Yamada
- Neutron Science Division, Institute for Materials Structure Science, High Energy Acceleration Research Organization, 203-1 Shirakata, Tokai, Naka 319-1106, Japan
| |
Collapse
|
18
|
Koh YP, Simon SL. The glass transition and enthalpy recovery of a single polystyrene ultrathin film using Flash DSC. J Chem Phys 2017; 146:203329. [DOI: 10.1063/1.4979126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yung P. Koh
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, USA
| | - Sindee L. Simon
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, USA
| |
Collapse
|
19
|
Napolitano S, Glynos E, Tito NB. Glass transition of polymers in bulk, confined geometries, and near interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:036602. [PMID: 28134134 DOI: 10.1088/1361-6633/aa5284] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
When cooled or pressurized, polymer melts exhibit a tremendous reduction in molecular mobility. If the process is performed at a constant rate, the structural relaxation time of the liquid eventually exceeds the time allowed for equilibration. This brings the system out of equilibrium, and the liquid is operationally defined as a glass-a solid lacking long-range order. Despite almost 100 years of research on the (liquid/)glass transition, it is not yet clear which molecular mechanisms are responsible for the unique slow-down in molecular dynamics. In this review, we first introduce the reader to experimental methodologies, theories, and simulations of glassy polymer dynamics and vitrification. We then analyse the impact of connectivity, structure, and chain environment on molecular motion at the length scale of a few monomers, as well as how macromolecular architecture affects the glass transition of non-linear polymers. We then discuss a revised picture of nanoconfinement, going beyond a simple picture based on interfacial interactions and surface/volume ratio. Analysis of a large body of experimental evidence, results from molecular simulations, and predictions from theory supports, instead, a more complex framework where other parameters are relevant. We focus discussion specifically on local order, free volume, irreversible chain adsorption, the Debye-Waller factor of confined and confining media, chain rigidity, and the absolute value of the vitrification temperature. We end by highlighting the molecular origin of distributions in relaxation times and glass transition temperatures which exceed, by far, the size of a chain. Fast relaxation modes, almost universally present at the free surface between polymer and air, are also remarked upon. These modes relax at rates far larger than those characteristic of glassy dynamics in bulk. We speculate on how these may be a signature of unique relaxation processes occurring in confined or heterogeneous polymeric systems.
Collapse
Affiliation(s)
- Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | | | | |
Collapse
|
20
|
Sun S, Xu H, Han J, Zhu Y, Zuo B, Wang X, Zhang W. The architecture of the adsorbed layer at the substrate interface determines the glass transition of supported ultrathin polystyrene films. SOFT MATTER 2016; 12:8348-8358. [PMID: 27714375 DOI: 10.1039/c6sm01500j] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To elucidate the mechanism underlying the effect of polymer/solid interfacial interactions on the dynamics of thin polymer films, the glass transition of thin end-functionalized polystyrene films supported on SiO2-Si, such as proton-terminated PS (PS-H), α,ω-dicarboxy-terminated PS (PS-COOH), and α,ω-dihydroxyl-terminated PS (PS-OH), was investigated. All the PS films exhibited a substantial depression in Tg with decreasing film thickness, while the extent of such depression was strongly dependent on the chemical structure of the end groups and molecular weights. It was found that T - T of the various PS films increased linearly with increasing hads/Rg, in which hads is the thickness of the interfacial adsorbed layer and Rg is the radius of gyration of PS. The hads/Rg is a direct reflection of the macromolecular chain conformation within the adsorbed layer which was affected by its end groups and molecular weights. These findings are in line with the work of Napolitano, and present direct experimental evidence.
Collapse
Affiliation(s)
- Shuzheng Sun
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hao Xu
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jun Han
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yumei Zhu
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Biao Zuo
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wei Zhang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
21
|
DeFelice J, Milner ST, Lipson JEG. Simulating Local Tg Reporting Layers in Glassy Thin Films. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jeffrey DeFelice
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Scott T. Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jane E. G. Lipson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
22
|
Lan T, Torkelson JM. Fragility-Confinement Effects: Apparent Universality as a Function of Scaled Thickness in Films of Freely Deposited, Linear Polymer and Its Absence in Densely Grafted Brushes. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02489] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tian Lan
- Department of Materials Science
and Engineering and ‡Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John M. Torkelson
- Department of Materials Science
and Engineering and ‡Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Tan AW, Torkelson JM. Poly(methyl methacrylate) nanotubes in AAO templates: Designing nanotube thickness and characterizing the T-confinement effect by DSC. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.11.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Shamim N, Koh YP, Simon SL, McKenna GB. Glass transition temperature of thin polycarbonate films measured by flash differential scanning calorimetry. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23583] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nabila Shamim
- Department of Chemical Engineering; Whitacre College of Engineering, Texas Tech University; Lubbock Texas 79409-3121
| | - Yung P. Koh
- Department of Chemical Engineering; Whitacre College of Engineering, Texas Tech University; Lubbock Texas 79409-3121
| | - Sindee L. Simon
- Department of Chemical Engineering; Whitacre College of Engineering, Texas Tech University; Lubbock Texas 79409-3121
| | - Gregory B. McKenna
- Department of Chemical Engineering; Whitacre College of Engineering, Texas Tech University; Lubbock Texas 79409-3121
| |
Collapse
|
25
|
Hayashi T, Fukao K. Segmental and local dynamics of stacked thin films of poly(methyl methacrylate). PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022602. [PMID: 25353497 DOI: 10.1103/physreve.89.022602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Indexed: 06/04/2023]
Abstract
The glass transition temperature and the dynamics of the α and β processes have been investigated using differential scanning calorimetry and dielectric relaxation spectroscopy during successive annealing processes above the glass transition temperature for stacked thin films of poly(methyl methacrylate) (PMMA) of various thicknesses. The glass transition temperature and the dynamics of the α process (segmental motion) of as-stacked PMMA thin films exhibit thin-film-like behavior, insofar as the glass transition temperature is depressed and the dynamics of the α process are faster than those of the bulk system. Annealing at high temperature causes the glass transition temperature to increase from the reduced value and causes the dynamics of the α process to become slower approaching those of the bulk. Contrary to the segmental motion, the relaxation time of the β process (local motion) of the stacked PMMA thin films is almost equal to that of the bulk PMMA and is unaffected by the annealing process. However, the relaxation strengths of both the α process and β process show a strong correlation between each other. The sum of the relaxation strengths remains almost unchanged, while the individual relaxation strengths change during the annealing process. The fragility index of the stacked PMMA thin films increases with annealing, which suggests that the glassy state of the stacked thin films changes from strong to fragile.
Collapse
Affiliation(s)
- Tatsuhiko Hayashi
- Department of Physics, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu, 525-8577 Japan
| | - Koji Fukao
- Department of Physics, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu, 525-8577 Japan
| |
Collapse
|
26
|
Rauscher PM, Pye JE, Baglay RR, Roth CB. Effect of Adjacent Rubbery Layers on the Physical Aging of Glassy Polymers. Macromolecules 2013. [DOI: 10.1021/ma401498m] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Phillip M. Rauscher
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Justin E. Pye
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Roman R. Baglay
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Connie B. Roth
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
27
|
Ediger MD, Forrest JA. Dynamics near Free Surfaces and the Glass Transition in Thin Polymer Films: A View to the Future. Macromolecules 2013. [DOI: 10.1021/ma4017696] [Citation(s) in RCA: 385] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. D. Ediger
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - J. A. Forrest
- Department
of Physics and Astronomy, University of Waterloo, 200 University
Avenue W., Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
28
|
Napolitano S, Capponi S, Vanroy B. Glassy dynamics of soft matter under 1D confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:61. [PMID: 23797356 DOI: 10.1140/epje/i2013-13061-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
The structural dynamics of polymers and simple liquids confined at the nanometer scale has been intensively investigated in the last two decades in order to test the validity of theories on the glass transition predicting a characteristic length scale of a few nanometers. Although this goal has not yet been reached, the anomalous behavior displayed by some systems--e.g. thin films of polystyrene exhibit reductions of Tg exceeding 70 K and a tremendous increase in the elastic modulus--has attracted a broad community of researchers, and provided astonishing advancement of both theoretical and experimental soft matter physics. 1D confinement is achieved in thin films, which are commonly treated as systems at thermodynamic equilibrium where free surfaces and solid interfaces introduce monotonous mobility gradients, extending for several molecular sizes. Limiting the discussion to finite-size and interfacial effects implies that film thickness and surface interactions should be sufficient to univocally determine the deviation from bulk behavior. On the contrary, such an oversimplified picture, although intuitive, cannot explain phenomena like the enhancement of segmental mobility in proximity of an adsorbing interface, or the presence of long-lasting metastable states in the liquid state. Based on our recent work, we propose a new picture on the dynamics of soft matter confined in ultrathin films, focusing on non-equilibrium and on the impact of irreversibly chain adsorption on the structural relaxation. We describe the enhancement of dynamics in terms of the excess in interfacial free volume, originating from packing frustration in the adsorbed layer (Guiselin brush) at t(*) ≪ 1, where t(*) is the ratio between the annealing time and the time scale of adsorption. Prolonged annealing at times exceeding the reptation time (usually t(*) ≫ 1 induces densification, and thus reduces the deviation from bulk behavior. In this Colloquium, after reviewing the experimental approaches permitting to investigate the structural relaxation of films with one, two or no free surfaces by means of dielectric spectroscopy, we propose several methods to determine gradients of mobility in thin films, and then discuss on the unexploited potential of analyses based on the time, temperature and thickness dependence of the orientational polarization via the dielectric strength.
Collapse
Affiliation(s)
- Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université Libre de Bruxelles, Boulevard du Triomphe, Bâtiment NO, 1050, Bruxelles, Belgium.
| | | | | |
Collapse
|
29
|
Gao S, Koh YP, Simon SL. Calorimetric Glass Transition of Single Polystyrene Ultrathin Films. Macromolecules 2013. [DOI: 10.1021/ma3020036] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siyang Gao
- Department
of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, United States
| | - Yung P. Koh
- Department
of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, United States
| | - Sindee L. Simon
- Department
of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, United States
| |
Collapse
|