He L, Cheong JW, Pradana A, Chew LY. Effects of correlation in an information ratchet with finite tape.
Phys Rev E 2023;
107:024130. [PMID:
36932557 DOI:
10.1103/physreve.107.024130]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
With the finite-tape autonomous information ratchet modeled by He et al. [Phys. Rev. E 105, 054131 (2022)2470-004510.1103/PhysRevE.105.054131], we recast the information processing second law, giving a tighter bound on the work extracted, in terms of the marginal bit-ratchet distribution defined from the joint tape-ratchet distribution. The marginal distribution is further utilized to probe and elucidate the conditions that lead to the presence of equilibrium and nonequilibrium stationary states in general, which are related to the effects of correlation. Applying our analysis to two designs of this information ratchet, where correlations within manifest differently, we uncover the mathematical condition for equilibrium stationary states for information ratchets that harness correlation, to identify them for engine operation during the transient phase.
Collapse