1
|
Hernandez-Rodriguez G, Tenorio-Garcia E, Ettelaie R, Lishchuk SV, Harbottle D, Murray BS, Sarkar A. Demulsification of Pickering emulsions: advances in understanding mechanisms to applications. SOFT MATTER 2024; 20:7344-7356. [PMID: 39258321 DOI: 10.1039/d4sm00600c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Pickering emulsions are ultra-stable dispersions of two immiscible fluids stabilized by solid or microgel particles rather than molecular surfactants. Although their ultra-stability is a signature performance indicator, often such high stability hinders their demulsification, i.e., prevents the droplet coalescence that is needed for phase separation on demand, or release of the active ingredients encapsulated within droplets and/or to recover the particles themselves, which may be catalysts, for example. This review aims to provide theoretical and experimental insights on demulsification of Pickering emulsions, in particular identifying the mechanisms of particle dislodgment from the interface in biological and non-biological applications. Even though the adhesion of particles to the interface can appear irreversible, it is possible to detach particles via (1) alteration of particle wettability, and/or (2) particle dissolution, affecting the particle radius by introducing a range of physical conditions: pH, temperature, heat, shear, or magnetic fields; or via treatment with chemical/biochemical additives, including surfactants, enzymes, salts, or bacteria. Many of these changes ultimately influence the interfacial rheology of the particle-laden interface, which is sometimes underestimated. There is increasing momentum to create responsive Pickering particles such that they offer switchable wettability (demulsification and re-emulsification) when these conditions are changed. Demulsification via wettability alteration seems like the modus operandi whilst particle dissolution remains only partially explored, largely dominated by food digestion-related studies where Pickering particles are digested using gastrointestinal enzymes. Overall, this review aims to stimulate new thinking about the control of demulsification of Pickering emulsions for release of active ingredients associated with these ultra-stable emulsions.
Collapse
Affiliation(s)
- Gloria Hernandez-Rodriguez
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
- School of Chemical and Process Engineering, University of Leeds, UK
| | - Elizabeth Tenorio-Garcia
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Rammile Ettelaie
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Sergey V Lishchuk
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
- Thermodynamics and Process Engineering, Technische Universität Berlin, 10587 Berlin, Germany
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, UK
| | - Brent S Murray
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Anwesha Sarkar
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
2
|
Cook AB, Schlich M, Manghnani PN, Moore TL, Decuzzi P, Palange AL. Size effects of discoidal
PLGA
nanoconstructs in Pickering emulsion stabilization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alexander B. Cook
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Genoa Italy
| | - Michele Schlich
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Genoa Italy
| | - Purnima N. Manghnani
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Genoa Italy
| | - Thomas L. Moore
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Genoa Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Genoa Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Genoa Italy
| |
Collapse
|
3
|
Fei W, Tzelios PM, Bishop KJM. Magneto-Capillary Particle Dynamics at Curved Interfaces: Time-Varying Fields and Drop Mixing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36. [PMID: 31859516 DOI: 10.1021/acs.langmuir.9b03119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spatially uniform magnetic fields induce nonzero forces on magnetic particles adsorbed at curved liquid interfaces thereby driving their motion. Such motions, prohibited in bulk fluids, arise due to interfacial constraints that couple magnetic torques to capillary forces at curved interfaces. Here, we show that time-varying (spatially uniform) magnetic fields can be used to drive a variety of steady particle motions on water drops in decane. Upon application of a precessing field, magnetic Janus particles with amphiphilic surface chemistry move either along circular orbits at the drop poles or along zigzag paths at the drop equator. The different magneto-capillary motions depend on the frequency and precession angle of the field as well as the initial position of the particle on the drop surface. Our experimental observations are reproduced and explained by a mathematical model that accounts for the relevant magnetic, capillary, and hydrodynamic forces and torques that contribute to particle motion. In addition to ferromagnetic Janus particles, we show that similar dynamics can be achieved using superparamagnetic carbonyl iron particles, which are manufactured on industrial scales and respond to even weaker magnetic fields. We demonstrate how the field-driven motion of such particles at the drop interface can induce fluid flows that effectively mix the drop interior. These results suggest that magneto-capillary particle motions could be used to enhance mass transfer within emulsions stabilized by magnetic particles.
Collapse
Affiliation(s)
- Wenjie Fei
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Peter M Tzelios
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Kyle J M Bishop
- Department of Chemical Engineering, Columbia University, New York, United States
| |
Collapse
|
4
|
Guzowski J, Gim B. Particle clusters at fluid-fluid interfaces: equilibrium profiles, structural mechanics and stability against detachment. SOFT MATTER 2019; 15:4921-4938. [PMID: 31169851 DOI: 10.1039/c9sm00425d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigate clustering of particles at an initially flat fluid-fluid interface of surface tension γ under an external force f directed perpendicular to the interface. We employ analytical theory, numerical energy minimization (Surface Evolver) and computational fluid dynamics (the Lattice-Boltzmann method) to study the equilibrium deformation of the interface and structural mechanics of the clusters, in particular at the onset of instability. In the case of incompressible clusters, we find that the equilibrium 3D interface profiles are uniquely determined by the length scale γ/(fn0), where n0 is the particle surface number density, and a non-dimensional shape parameter f2Nn0/γ2. The scaling remains valid in the whole regime of forces f, i.e., even close to the stability limit fcrit. In the cases with an initial hexagonal arrangement of the particles, upon f approaching fcrit, our simulations additionally reveal the emergence of curvature-induced defects and 2D stress anisotropy. We develop stability diagrams in terms of f, N (we study 7 ≤ N ≤ 61), and the contact angle θp at the particles and identify three unstable regimes corresponding to (i) collective detachment of the whole cluster from the interface, (ii) ejection of individual particles, and (iii) both detachment and ejection. We also discuss possible metastable states. Altogether, our results may help in better understanding and controlling the particle interfacial instabilities with potential uses in synthesis of new materials, environmental sciences and microfluidics.
Collapse
Affiliation(s)
- Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | | |
Collapse
|
5
|
Allahyarov E, Löwen H. Length segregation in mixtures of spherocylinders induced by imposed topological defects. SOFT MATTER 2018; 14:8962-8973. [PMID: 30375629 DOI: 10.1039/c8sm01790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We explore length segregation in binary mixtures of spherocylinders of lengths L1 and L2 which are tangentially confined on a spherical surface of radius R. The orientation of the spherocylinders is constrained along an externally imposed direction field on the sphere which is either along the longitude or the latitude lines of the sphere. In both situations, integer orientational defects at the poles are imposed. Using computer simulations we show that these topological defects induce a complex segregation picture also depending on the length ratio factor γ = L2/L1 and the total packing fraction η of the spherocylinders. When the binary mixture is aligned along the longitude lines of the sphere, shorter rods tend to accumulate at the topological defects of the polar caps whereas longer rods occupy the central equatorial area of the spherical surface. In the reverse case of latitude ordering, a new state can emerge where longer rods are predominantly both in the cap and in the equatorial areas and shorter rods are localized in between. As a reference situation, we consider a defect-free situation in the flat plane and do not find any length segregation there at similar γ and η; hence, the segregation is purely induced by the imposed topological defects. We also develop an Onsager-like density functional theory which is capable of predicting length segregation in ordered mixtures. At low density, the results of this theory are in good agreement with the simulation data.
Collapse
Affiliation(s)
- Elshad Allahyarov
- Theoretische Chemie, Universität Duisburg-Essen, D-45141 Essen, Germany
| | | |
Collapse
|
6
|
Planchette C, Lorenceau E, Biance AL. Rupture of granular rafts: effects of particle mobility and polydispersity. SOFT MATTER 2018; 14:6419-6430. [PMID: 29938267 DOI: 10.1039/c8sm00653a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reversible encapsulation of liquid materials is a technical challenge in many applications such as for the transport and controlled delivery of active ingredients. In contrast to most state-of-the-art processes, capillary adsorbed solid particles can achieve chemical-reaction-free encapsulation by forming dense rafts which isolate the liquid from its surroundings. While the production conditions of such capsules have been characterized, the control of the armor robustness remains poorly described and understood. In this paper, we probe the armor robustness via impacts of droplets on encapsulated materials. Thereby, we establish the mechanisms and conditions of armor rupture and derive models that predict the rupturing thresholds or probabilities. Using monodisperse sized particles and gradually increasing the impacting drop velocity, a sharp transition from sustained to coalescing drops is observed. On mobile rafts made of particles at the water/air interface, the velocity threshold increases with increasing particle diameter while an opposite trend is observed on immobile rafts made of particles trapped at a gelified interface. Two models based on particle pair and triplet interactions, respectively, quantitatively match the experiments. Assembling rafts with particles of two different sizes significantly smoothens the coalescence transition, regardless of particle mobility. Beyond apparent similarities, rationalizing the rupturing probability of mobile and immobile armor evidences very different sensitivity to heterogeneities. On immobile armor, drop coalescence remains random and thus well described by the statistical particle distribution while on mobile armor the ruptures are preferably localized at the non-percolated parts of the granular network.
Collapse
Affiliation(s)
- Carole Planchette
- Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, Inffeldgasse 25/F, 8010 Graz, Austria.
| | | | | |
Collapse
|
7
|
Rozynek Z, Bielas R, Józefczak A. Efficient formation of oil-in-oil Pickering emulsions with narrow size distributions by using electric fields. SOFT MATTER 2018; 14:5140-5149. [PMID: 29881858 DOI: 10.1039/c8sm00671g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Droplets covered by adsorbed particles are used in a wide range of research studies and applications, including stabilising emulsions used in the food or cosmetic industries, and fabricating new materials, such as microcapsules or multi-cavity structures. Pickering emulsions are commonly prepared by bulk emulsification techniques, for instance, by ultrasonic homogenisation or mechanical stirring, by membrane emulsification, or with the use of microfluidics. The latter two methods typically allow for more precise control of the droplet size distribution, whereas the bulk techniques guarantee high throughput. Here we propose a new bulk approach to fabricating Pickering emulsions by utilising electric fields. We prepare oil-in-oil emulsions stabilised by microparticles and control the mean size of the Pickering droplets. In our approach we take advantage of total surface area reduction of emulsion droplets by electrocoalescence. This leads to an increase in particle coverage, and eventually to formation of densely packed particle shells on Pickering droplets. First, we prepare an unstable pre-emulsion with droplets having small sizes and low particle coverages, from which the final Pickering emulsion is formed via consecutive coalescence events speeded up by application of electric fields. We monitor the development of the emulsions with optical microscopy imaging. The results demonstrate that the utilisation of electric fields goes beyond the mere role of enhancing coalescence; it plays an important role in surface particle manipulation and droplet rotation that further promote formation of stable particle-covered drops.
Collapse
Affiliation(s)
- Z Rozynek
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | | | | |
Collapse
|
8
|
Cappelli S, Xie Q, Harting J, de Jong A, Prins M. Dynamic wetting: status and prospective of single particle based experiments and simulations. N Biotechnol 2015; 32:420-32. [DOI: 10.1016/j.nbt.2015.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/16/2015] [Indexed: 11/28/2022]
|
9
|
Xu J, Ma A, Liu T, Lu C, Wang D, Xu H. Janus-like Pickering emulsions and their controllable coalescence. Chem Commun (Camb) 2013; 49:10871-3. [DOI: 10.1039/c3cc46738d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Tavacoli JW, Katgert G, Kim EG, Cates ME, Clegg PS. Size limit for particle-stabilized emulsion droplets under gravity. PHYSICAL REVIEW LETTERS 2012; 108:268306. [PMID: 23005023 DOI: 10.1103/physrevlett.108.268306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Indexed: 06/01/2023]
Abstract
We demonstrate that emulsion droplets stabilized by interfacial particles become unstable beyond a size threshold set by gravity. This holds not only for colloids but also for supracolloidal glass beads, using which we directly observe the ejection of particles near the droplet base. The number of particles acting together in these ejection events decreases with time until a stable acornlike configuration is reached. Stability occurs when the weight of all remaining particles is less than the interfacial binding force of one particle. We also show the importance of the curvature of the droplet surface in promoting particle ejection.
Collapse
Affiliation(s)
- J W Tavacoli
- School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | | | | | | | | |
Collapse
|