2
|
Xue L, Sanz B, Luo A, Turner KT, Wang X, Tan D, Zhang R, Du H, Steinhart M, Mijangos C, Guttmann M, Kappl M, del Campo A. Hybrid Surface Patterns Mimicking the Design of the Adhesive Toe Pad of Tree Frog. ACS NANO 2017; 11:9711-9719. [PMID: 28885831 PMCID: PMC5656980 DOI: 10.1021/acsnano.7b04994] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biological materials achieve directional reinforcement with oriented assemblies of anisotropic building blocks. One such example is the nanocomposite structure of keratinized epithelium on the toe pad of tree frogs, in which hexagonal arrays of (soft) epithelial cells are crossed by densely packed and oriented (hard) keratin nanofibrils. Here, a method is established to fabricate arrays of tree-frog-inspired composite micropatterns composed of polydimethylsiloxane (PDMS) micropillars embedded with polystyrene (PS) nanopillars. Adhesive and frictional studies of these synthetic materials reveal a benefit of the hierarchical and anisotropic design for both adhesion and friction, in particular, at high matrix-fiber interfacial strengths. The presence of PS nanopillars alters the stress distribution at the contact interface of micropillars and therefore enhances the adhesion and friction of the composite micropattern. The results suggest a design principle for bioinspired structural adhesives, especially for wet environments.
Collapse
Affiliation(s)
- Longjian Xue
- The Institute
of Technological Science and School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan 430072, China
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- E-mail for L.X.:
| | - Belén Sanz
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- Instituto
de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Aoyi Luo
- Department
of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 S. 33rd Street, Philadelphia, Pennsylvania 19104-6315, United States
| | - Kevin T. Turner
- Department
of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 S. 33rd Street, Philadelphia, Pennsylvania 19104-6315, United States
| | - Xin Wang
- The Institute
of Technological Science and School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan 430072, China
| | - Di Tan
- The Institute
of Technological Science and School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan 430072, China
| | - Rui Zhang
- The Institute
of Technological Science and School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan 430072, China
| | - Hang Du
- The Institute
of Technological Science and School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan 430072, China
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität
Osnabrück, Barbarastr.
7, 49069 Osnabrück, Germany
| | - Carmen Mijangos
- Instituto
de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Markus Guttmann
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Kappl
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Aránzazu del Campo
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- INM
− Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
- E-mail for A.d.C.:
| |
Collapse
|
3
|
Liu Y, Gao Y. Non-uniform breaking of molecular bonds, peripheral morphology and releasable adhesion by elastic anisotropy in bio-adhesive contacts. J R Soc Interface 2015; 12:20141042. [PMID: 25392403 DOI: 10.1098/rsif.2014.1042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biological adhesive contacts are usually of hierarchical structures, such as the clustering of hundreds of sub-micrometre spatulae on keratinous hairs of gecko feet, or the clustering of molecular bonds into focal contacts in cell adhesion. When separating these interfaces, releasable adhesion can be accomplished by asymmetric alignment of the lowest scale discrete bonds (such as the inclined spatula that leads to different peeling force when loading in different directions) or by elastic anisotropy. However, only two-dimensional contact has been analysed for the latter method (Chen & Gao 2007 J. Mech. Phys. Solids 55, 1001-1015 (doi:10.1016/j.jmps.2006.10.008)). Important questions such as the three-dimensional contact morphology, the maximum to minimum pull-off force ratio and the tunability of releasable adhesion cannot be answered. In this work, we developed a three-dimensional cohesive interface model with fictitious viscosity that is capable of simulating the de-adhesion instability and the peripheral morphology before and after the onset of instability. The two-dimensional prediction is found to significantly overestimate the maximum to minimum pull-off force ratio. Based on an interface fracture mechanics analysis, we conclude that (i) the maximum and minimum pull-off forces correspond to the largest and smallest contact stiffness, i.e. 'stiff-adhere and compliant-release', (ii) the fracture toughness is sensitive to the crack morphology and the initial contact shape can be designed to attain a significantly higher maximum-to-minimum pull-off force ratio than a circular contact, and (iii) since the adhesion is accomplished by clustering of discrete bonds or called bridged crack in terms of fracture mechanics terminology, the above conclusions can only be achieved when the bridging zone is significantly smaller than the contact size. This adhesion-fracture analogy study leads to mechanistic predictions that can be readily used to design biomimetics and releasable adhesives.
Collapse
Affiliation(s)
- Yan Liu
- Tianjin First Central Hospital, Tianjin Medical University, Tianjin 300192, People's Republic of China Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Yanfei Gao
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|