1
|
Ming Y, Hu H, Li HM, Ding ZJ, Ren J. Universal Kardar-Parisi-Zhang transient diffusion in nonequilibrium anharmonic chains. Phys Rev E 2023; 107:014204. [PMID: 36797957 DOI: 10.1103/physreve.107.014204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/10/2022] [Indexed: 01/05/2023]
Abstract
The well known nonlinear fluctuating hydrodynamics theory has grouped diffusions in anharmonic chains into two universality classes: one is the Kardar-Parisi-Zhang (KPZ) class for chains with either asymmetric potential or nonzero static pressure and the other is the Gaussian class for chains with symmetric potential at zero static pressure, such as Fermi-Pasta-Ulam-Tsingou (FPUT)-β chains. However, little is known of the nonequilibrium transient diffusion in anharmonic chains. Here, we reveal that the KPZ class is the only universality class for nonequilibrium transient diffusion, manifested as the KPZ scaling of the side peaks of momentum correlation (corresponding to the sound modes correlation), which was completely unexpected in equilibrium FPUT-β chains. The underlying mechanism is that the nonequilibrium soliton dynamics cause nonzero transient pressure so that the sound modes satisfy approximately the noisy Burgers equation, in which the collisions of solitons was proved to yield the KPZ dynamic exponent of the soliton dispersion. Therefore, the unexpected KPZ universality class is obtained in the nonequilibrium transient diffusion in FPUT-β chains and the corresponding carriers of nonequilibrium transient diffusion are attributed to solitons.
Collapse
Affiliation(s)
- Yi Ming
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Hao Hu
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Hui-Min Li
- Supercomputing Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ze-Jun Ding
- Department of Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Ren
- Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Liu J, Zhang C, Bao JD, Chen X. Correlated continuous-time random walk in the velocity field: the role of velocity and weak asymptotics. SOFT MATTER 2021; 17:9786-9798. [PMID: 34657952 DOI: 10.1039/d1sm00995h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Within the framework of a space-time correlated continuous-time random walk model, anomalous diffusion of particles moving in the velocity field is studied in this paper. The weak asymptotic form ω(t) ∼ t-(1+α), 1 < α < 2 for large t, is considered to be the waiting time distribution. The analytical results reveal that the diffusion in the velocity field, i.e., the mean squared displacement, can display a multi-fractional form caused by dispersive bias and space-time correlation. The numerical results indicate that the multi-fractional diffusion leads to a crossover phenomenon in-between the process at an intermediate timescale, followed by a steady state which is always determined by the largest diffusion exponent term. In addition, the role of velocity and weak asymptotics is discussed. The extremely small fluid velocity can characterize the diffusion by a diffusion coefficient instead of diffusion exponent, which is distinctly different from the former definition. In particular, for the waiting time displaying a weak asymptotic property, if the anomalous part is suppressed by the normal part, a second crossover phenomenon appears at an intermediate timescale, followed by a steady normal diffusion, which implies that the anomalies underlying the process are smoothed out at large timescales. Moreover, we discuss that the consideration of bias and correlation could help to avoid a possible not readily noticeable mistake in studying the topic concerned in this paper, which may be helpful in the relevant experimental research.
Collapse
Affiliation(s)
- Jian Liu
- Department of Physics, Beijing Technology and Business University, Beijing, 100048, China.
- Institute of Systems Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Caiyun Zhang
- Department of Physics, Beijing Technology and Business University, Beijing, 100048, China.
- Institute of Systems Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Jing-Dong Bao
- Department of Physics, Beijing Normal University, Beijing, 100875, China
| | - Xiaosong Chen
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Basak S, Sengupta S, Chattopadhyay K. Understanding biochemical processes in the presence of sub-diffusive behavior of biomolecules in solution and living cells. Biophys Rev 2019; 11:851-872. [PMID: 31444739 PMCID: PMC6957588 DOI: 10.1007/s12551-019-00580-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 01/24/2023] Open
Abstract
In order to maintain cellular function, biomolecules like protein, DNA, and RNAs have to diffuse to the target spaces within the cell. Changes in the cytosolic microenvironment or in the nucleus during the fulfillment of these cellular processes affect their mobility, folding, and stability thereby impacting the transient or stable interactions with their adjacent neighbors in the organized and dynamic cellular interior. Using classical Brownian motion to elucidate the diffusion behavior of these biomolecules is hard considering their complex nature. The understanding of biomolecular diffusion inside cells still remains elusive due to the lack of a proper model that can be extrapolated to these cases. In this review, we have comprehensively addressed the progresses in this field, laying emphasis on the different aspects of anomalous diffusion in the different biochemical reactions in cell interior. These experiment-based models help to explain the diffusion behavior of biomolecules in the cytosolic and nuclear microenvironment. Moreover, since understanding of biochemical reactions within living cellular system is our main focus, we coupled the experimental observations with the concept of sub-diffusion from in vitro to in vivo condition. We believe that the pairing between the understanding of complex behavior and structure-function paradigm of biological molecules would take us forward by one step in order to solve the puzzle around diseases caused by cellular dysfunction.
Collapse
Affiliation(s)
- Sujit Basak
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Sombuddha Sengupta
- Protein Folding and Dynamics Lab, Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Lab, Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| |
Collapse
|
4
|
Ming Y, Ye L, Chen HS, Mao SF, Li HM, Ding ZJ. Solitons as candidates for energy carriers in Fermi-Pasta-Ulam lattices. Phys Rev E 2018; 97:012221. [PMID: 29448422 DOI: 10.1103/physreve.97.012221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Indexed: 11/07/2022]
Abstract
Currently, effective phonons (renormalized or interacting phonons) rather than solitary waves (for short, solitons) are regarded as the energy carriers in nonlinear lattices. In this work, by using the approximate soliton solutions of the corresponding equations of motion and adopting the Boltzmann distribution for these solitons, the average velocities of solitons are obtained and are compared with the sound velocities of energy transfer. Excellent agreements with the numerical results and the predictions of other existing theories are shown in both the symmetric Fermi-Pasta-Ulam-β lattices and the asymmetric Fermi-Pasta-Ulam-αβ lattices. These clearly indicate that solitons are suitable candidates for energy carriers in Fermi-Pasta-Ulam lattices. In addition, the root-mean-square velocity of solitons can be obtained from the effective phonons theory.
Collapse
Affiliation(s)
- Yi Ming
- School of Physics and Material Science, Anhui University, Hefei, Anhui 230601, China
| | - Liu Ye
- School of Physics and Material Science, Anhui University, Hefei, Anhui 230601, China
| | - Han-Shuang Chen
- School of Physics and Material Science, Anhui University, Hefei, Anhui 230601, China
| | - Shi-Feng Mao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui-Min Li
- Supercomputing Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ze-Jun Ding
- Department of Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.,Key Laboratory of Strongly-coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Xiong D. Anomalous temperature-dependent heat transport in one-dimensional momentum-conserving systems with soft-type interparticle interaction. Phys Rev E 2017; 95:042127. [PMID: 28505818 DOI: 10.1103/physreve.95.042127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 06/07/2023]
Abstract
We numerically investigate the heat transport problem in a one-dimensional momentum-conserving lattice with a soft-type (ST) anharmonic interparticle interaction. It is found that with the increase of the system's temperature, while the introduction of ST anharmonicity softens phonons and decreases their velocities, this type of nonlinearity like its hard type (HT) counterpart, can still not be able to fully damp the longest wavelength phonons. Therefore, a usual anomalous temperature dependence of heat transport with certain scaling properties similarly to those shown in the Fermi-Pasta-Ulam-β-like systems with HT interactions can be seen. Our detailed examination from simulations verifies this temperature-dependent behavior well.
Collapse
Affiliation(s)
- Daxing Xiong
- Department of Physics, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
6
|
Artuso R, Cristadoro G, Esposti MD, Knight G. Sparre-Andersen theorem with spatiotemporal correlations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052111. [PMID: 25353743 DOI: 10.1103/physreve.89.052111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 06/04/2023]
Abstract
The Sparre-Andersen theorem is a remarkable result in one-dimensional random walk theory concerning the universality of the ubiquitous first-passage-time distribution. It states that the probability distribution ρ(n) of the number of steps needed for a walker starting at the origin to land on the positive semiaxes does not depend on the details of the distribution for the jumps of the walker, provided this distribution is symmetric and continuous, where in particular ρ(n) ∼ n(-3/2) for large number of steps n. On the other hand, there are many physical situations in which the time spent by the walker in doing one step depends on the length of the step and the interest concentrates on the time needed for a return, not on the number of steps. Here we modify the Sparre-Andersen proof to deal with such cases, in rather general situations in which the time variable correlates with the step variable. As an example we present a natural process in 2D that shows that deviations from normal scaling are present for the first-passage-time distribution on a semiplane.
Collapse
Affiliation(s)
- Roberto Artuso
- Center for Nonlinear and Complex Systems, Università dell' Insubria, Via Valleggio 11, Como 22100, Italy and I.N.F.N. Sezione di Milano, Via Celoria 16, Milano 20133, Italy
| | - Giampaolo Cristadoro
- Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy
| | - Mirko Degli Esposti
- Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy
| | - Georgie Knight
- Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy
| |
Collapse
|
7
|
Zaburdaev V, Denisov S, Hänggi P. Space-time velocity correlation function for random walks. PHYSICAL REVIEW LETTERS 2013; 110:170604. [PMID: 23679699 DOI: 10.1103/physrevlett.110.170604] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/11/2013] [Indexed: 06/02/2023]
Abstract
Space-time correlation functions constitute a useful instrument from the research toolkit of continuous-media and many-body physics. Here we adopt this concept for single-particle random walks and demonstrate that the corresponding space-time velocity autocorrelation functions reveal correlations which extend in time much longer than estimated with the commonly employed temporal correlation functions. A generic feature of considered random-walk processes is an effect of velocity echo identified by the existence of time-dependent regions where most of the walkers are moving in the direction opposite to their initial motion. We discuss the relevance of the space-time velocity correlation functions for the experimental studies of cold atom dynamics in an optical potential and charge transport on micro- and nanoscales.
Collapse
Affiliation(s)
- V Zaburdaev
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | | | | |
Collapse
|