1
|
Ghosh S, Joshi C, Baskaran A, Hagan MF. Spatiotemporal control of structure and dynamics in a polar active fluid. SOFT MATTER 2024; 20:7059-7071. [PMID: 39188251 DOI: 10.1039/d4sm00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We apply optimal control theory to a model of a polar active fluid (the Toner-Tu model), with the objective of driving the system into particular emergent dynamical behaviors or programming switching between states on demand. We use the effective self-propulsion speed as the control parameter (i.e. the means of external actuation). We identify control protocols that achieve outcomes such as relocating asters to targeted positions, forcing propagating solitary waves to reorient to a particular direction, and switching between stationary asters and propagating fronts. We analyze the solutions to identify generic principles for controlling polar active fluids. Our findings have implications for achieving spatiotemporal control of active polar systems in experiments, particularly in vitro cytoskeletal systems. Additionally, this research paves the way for leveraging optimal control methods to engineer the structure and dynamics of active fluids more broadly.
Collapse
Affiliation(s)
- Saptorshi Ghosh
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
| | - Chaitanya Joshi
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
| |
Collapse
|
2
|
Fylling C, Tamayo J, Gopinath A, Theillard M. Multi-population dissolution in confined active fluids. SOFT MATTER 2024; 20:1392-1409. [PMID: 38305767 DOI: 10.1039/d3sm01196h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Autonomous out-of-equilibrium agents or cells in suspension are ubiquitous in biology and engineering. Turning chemical energy into mechanical stress, they generate activity in their environment, which may trigger spontaneous large-scale dynamics. Often, these systems are composed of multiple populations that may reflect the coexistence of multiple species, differing phenotypes, or chemically varying agents in engineered settings. Here, we present a new method for modeling such multi-population active fluids subject to confinement. We use a continuum multi-scale mean-field approach to represent each phase by its first three orientational moments and couple their evolution with those of the suspending fluid. The resulting coupled system is solved using a parallel adaptive level-set-based solver for high computational efficiency and maximal flexibility in the confinement geometry. Motivated by recent experimental work, we employ our method to study the spatiotemporal dynamics of confined bacterial suspensions and swarms dominated by fluid hydrodynamic effects. Our in silico explorations reproduce observed emergent collective patterns, including features of active dissolution in two-population active-passive swarms, with results clearly suggesting that hydrodynamic effects dominate dissolution dynamics. Our work lays the foundation for a systematic characterization and study of collective phenomena in natural or synthetic multi-population systems such as bacteria colonies, bird flocks, fish schools, colloid swimmers, or programmable active matter.
Collapse
Affiliation(s)
- Cayce Fylling
- Department of Applied Mathematics, University of California Merced, Merced, CA95343, USA.
| | - Joshua Tamayo
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA.
| | - Arvind Gopinath
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA.
| | - Maxime Theillard
- Department of Applied Mathematics, University of California Merced, Merced, CA95343, USA.
| |
Collapse
|
3
|
Singha T, Polley A, Barma M. Clustering of lipids driven by integrin. SOFT MATTER 2023; 19:6814-6824. [PMID: 37654180 DOI: 10.1039/d3sm00809f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Integrin is an important transmembrane receptor protein which remodels the actin network and anchors the cell membrane towards the extracellular matrix via mechanochemical pathways. The clustering of specific lipids and lipid-anchored proteins, which is essential for a certain type of endocytosis process, is facilitated at integrin-mediated active regions. To study this, we propose a minimal exactly solvable model which includes the interplay of stochastic shuttling between integrin on and off states with the intrinsic dynamics of the membrane. We propose a two-step mechanism in which the integrin induces an aster-like arrangement in the actin network, followed by clustering of lipids in that region. We obtain an analytic expression for the deformation and local membrane velocity, and thereby the evolution of clustering mediated by a single integrin. The deformation evolves nonmonotonically and its dependence on the stochastic shuttling timescales and membrane properties is elucidated. Our estimates of the area of the deformed region and the number of lipids in it indicate strong clustering.
Collapse
Affiliation(s)
- Tapas Singha
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Anirban Polley
- Shanmugha Arts, Science, Technology and Research Academy, Tirumalaisamudram, Thanjavur, Tamilnadu 613401, India
- National Centre for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Mustansir Barma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500107, India
| |
Collapse
|
4
|
Lei T, Zhao C, Yan R, Zhao N. Collective behavior of chiral active particles with anisotropic interactions in a confined space. SOFT MATTER 2023; 19:1312-1329. [PMID: 36723153 DOI: 10.1039/d2sm01402e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extensive studies so far have indicated that chirality, anisotropic interactions and spatial confinement play important roles in collective dynamics in active matter systems. However, how the overall interplay of these crucial factors affects the novel phases and macroscopic properties remains less explored. Here, using Langevin dynamics simulations, we investigate the self-organization of a chiral active system composed of amphiphilic Janus particles, where the embedded anisotropic interaction orientation is assumed to be either the same or just opposite to the direction of active force. A wealth of dynamic phases are observed including formation of phase separation, clustering state, homogeneous state, spiral vortex flow, swarm and spatiotemporal oscillation. By tuning self-propelled angular speed and anisotropic interaction strength, we identify the non-equilibrium phase diagrams, and reveal the very non-trivial modulation of both vortex and swarm patterns. Intriguingly, we find that strong chirality-alignment-confinement coupling yields a self-driven spatial and temporal organization periodically oscillating between a counterclockwise vortex and a clockwise one. Our work provides a new understanding of the novel self-assembly arising in such a confined system and enables new strategies for achieving ordered dynamic structures.
Collapse
Affiliation(s)
- Ting Lei
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chaonan Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
5
|
Besse M, Chaté H, Solon A. Metastability of Constant-Density Flocks. PHYSICAL REVIEW LETTERS 2022; 129:268003. [PMID: 36608197 DOI: 10.1103/physrevlett.129.268003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
We study numerically the Toner-Tu field theory where the density field is maintained constant, a limit case of "Malthusian" flocks for which the asymptotic scaling of correlation functions in the ordered phase is known exactly. While we confirm these scaling laws, we also show that such constant-density flocks are metastable to the nucleation of a specific defect configuration, and are replaced by a globally disordered phase consisting of asters surrounded by shock lines that constantly evolves and remodels itself. We demonstrate that the main source of disorder lies along shock lines, rendering this active foam fundamentally different from the corresponding equilibrium system. We thus show that in the context of active matter also, a result obtained at all orders of perturbation theory can be superseded by nonperturbative effects, calling for a different approach.
Collapse
Affiliation(s)
- Marc Besse
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Hugues Chaté
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100094, China
| | - Alexandre Solon
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| |
Collapse
|
6
|
Vafa F. Defect dynamics in active polar fluids vs. active nematics. SOFT MATTER 2022; 18:8087-8097. [PMID: 36239265 DOI: 10.1039/d2sm00830k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Topological defects play a key role in two-dimensional active nematics, and a transient role in two-dimensional active polar fluids. Using a variational method, we study both the transient and long-time behavior of defects in two-dimensional active polar fluids in the limit of strong order and overdamped, compressible flow, and compare the defect dynamics with the corresponding active nematics model studied recently. One result is non-central interactions between defect pairs for active polar fluids, and by extending our analysis to allow orientation dynamics of defects, we find that the orientation of +1 defects, unlike that of ±1/2 defects in active nematics, is not locked to defect positions and relaxes to asters. Moreover, using a scaling argument, we explain the transient feature of active polar defects and show that in the steady state, active polar fluids are either devoid of defects or consist of a single aster. We argue that for contractile (extensile) active nematic systems, +1 vortices (asters) should emerge as bound states of a pair of +1/2 defects, which has been recently observed. Moreover, unlike the polar case, we show that for active nematics, a linear chain of equally spaced bound states of pairs of +1/2 defects can screen the activity term. A common feature in both models is the appearance of +1 defects (elementary in polar and composite in nematic) in the steady state.
Collapse
Affiliation(s)
- Farzan Vafa
- Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Lei T, Yan R, Zhao N. Biased-angle effect on diffusion dynamics and phase separation in anisotropic active particle system. J Chem Phys 2022; 156:204901. [DOI: 10.1063/5.0090427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A deep understanding for collective behavior in an active matter system with complex interactions has far-reaching impact in biology. In the present work, we adopt Langevin dynamics simulations to investigate diffusion dynamics and phase separation in an anisotropic active particle system with a tunable biased angle α defined as the deviation between the active force direction and anisotropic orientation. Our results demonstrate that the biased angle can induce super-rotational diffusion dynamics characterized by a power-law relationship between the mean square angle displacement (MSAD) and the time interval Δ t in the form of MSAD ∼ Δ t β with β > 1 and also result in non-trivial phase separation kinetics. As activity is dominant, nucleation time shows a non-monotonic dependence on the biased angle. Moreover, there arises a distinct transition of phase separation, from spinodal decomposition without apparent nucleation time to binodal decomposition with prominent nucleation delay. A significant inhibition effect occurs at right and obtuse angles, where the remarkable super-rotational diffusion prevents particle aggregation, leading to a slow nucleation process. As active force is competitive to anisotropic interactions, the system is almost homogeneous, while, intriguingly, we observe a re-entrant phase separation as a small acute angle is introduced. The prominent super-rotational diffusion under small angles provides an optimum condition for particle adsorption and cluster growth and, thus, accounts for the re-entrance of phase separation. A consistent scenario for the physical mechanism of our observations is achieved by properly considering the modulation of the biased angle on the interplay between activity and anisotropic interactions.
Collapse
Affiliation(s)
- Ting Lei
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Kumar S, Singh JP, Giri D, Mishra S. Effect of polydispersity on the dynamics of active Brownian particles. Phys Rev E 2021; 104:024601. [PMID: 34525623 DOI: 10.1103/physreve.104.024601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/09/2021] [Indexed: 11/07/2022]
Abstract
We numerically study the dynamics and the phases of self-propelled disk-shaped particles of different sizes with soft repulsive potential in two dimensions. Size diversity is introduced by the polydispersity index (PDI) ε, which is the width of the uniform distribution of the particle's radius. The self-propulsion speed of the particles controls the activity v. We observe enhanced dynamics for large size diversity among the particles. We calculate the effective diffusion coefficient D_{eff} in the steady state. The system exhibits four distinct phases, jammed phase with small D_{eff} for small activity and liquid phase with enhanced D_{eff} for large activity. The number fluctuation is larger and smaller than the equilibrium limit in the liquid and jammed phases, respectively. Further, the jammed phase is of two types: solid jammed and liquid jammed for small and large PDI. Whereas the liquid phase is called motility induced phase separation (MIPS) liquid for small PDI and for large PDI, we find enhanced diffusivity and call it the pure liquid phase. The system is studied for three packing densities ϕ, and the response of the system for polydispersity is the same for all ϕ's. Our study can help understand the behavior of cells of various sizes in a tissue, artificial self-driven granular particles, or living organisms of different sizes in a dense environment.
Collapse
Affiliation(s)
- Sameer Kumar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Jay Prakash Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Debaprasad Giri
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
9
|
Jose F, Anand SK, Singh SP. Phase separation of an active colloidal suspension via quorum-sensing. SOFT MATTER 2021; 17:3153-3161. [PMID: 33616149 DOI: 10.1039/d0sm02131h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present the Brownian dynamics simulation of an active colloidal suspension in two dimensions, where the self-propulsion speed of a colloid is regulated according to the local density sensed by it. The role of concentration-dependent motility in the phase-separation of colloids and their dynamics is investigated in detail. Interestingly, the system phase separates at a very low packing fraction (Φ≈ 0.125) at higher self-propulsion speeds (Pe), into a dense phase coexisting with a homogeneous phase and attains a long-range crystalline order beyond the transition point. The transition point is quantified here from the local density profiles and local and global-bond order parameters. We have shown that the characteristics of the phase diagram are qualitatively akin to the active Brownian particle (ABP) model. Moreover, our investigation reveals that the density-dependent motility amplifies the slow-down of the directed speed, which facilitates phase-separation even at low packing fractions. The effective diffusivity shows a crossover from quadratic rise to a power-law behavior of exponent 3/2 with Pe in the phase-separated regime. Furthermore, we have shown that the effective diffusion decreases exponentially with packing fraction in the phase-separated regime, while it shows a linear decrease in the single phase regime.
Collapse
Affiliation(s)
- Francis Jose
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India.
| | | | | |
Collapse
|
10
|
Mangeat M, Chatterjee S, Paul R, Rieger H. Flocking with a q-fold discrete symmetry: Band-to-lane transition in the active Potts model. Phys Rev E 2020; 102:042601. [PMID: 33212593 DOI: 10.1103/physreve.102.042601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/11/2020] [Indexed: 11/06/2022]
Abstract
We study the q-state active Potts model (APM) on a two-dimensional lattice in which self-propelled particles have q internal states corresponding to the q directions of motion. A local alignment rule inspired by the ferromagnetic q-state Potts model and self-propulsion via biased diffusion according to the internal particle states elicits collective motion at high densities and low noise. We formulate a coarse-grained hydrodynamic theory with which we compute the phase diagrams of the APM for q=4 and q=6 and analyze the flocking dynamics in the coexistence region, where the high-density (polar liquid) phase forms a fluctuating stripe of coherently moving particles on the background of the low-density (gas) phase. A reorientation transition of the phase-separated profiles from transversal band motion to longitudinal lane formation is found, which is absent in the Vicsek model and the active Ising model. The origin of this reorientation transition is revealed by a stability analysis: for large velocities the transverse diffusivity approaches zero and stabilizes lanes. Computer simulations corroborate the analytical predictions of the flocking and reorientation transitions and validate the phase diagrams of the APM.
Collapse
Affiliation(s)
- Matthieu Mangeat
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Swarnajit Chatterjee
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Raja Paul
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Heiko Rieger
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
11
|
Escaff D, Delpiano R. Flocking transition within the framework of Kuramoto paradigm for synchronization: Clustering and the role of the range of interaction. CHAOS (WOODBURY, N.Y.) 2020; 30:083137. [PMID: 32872818 DOI: 10.1063/5.0006218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
A Kuramoto-type approach to address flocking phenomena is presented. First, we analyze a simple generalization of the Kuramoto model for interacting active particles, which is able to show the flocking transition (the emergence of coordinated movements in a group of interacting self-propelled agents). In the case of all-to-all interaction, the proposed model reduces to the Kuramoto model for phase synchronization of identical motionless noisy oscillators. In general, the nature of this non-equilibrium phase transition depends on the range of interaction between the particles. Namely, for a small range of interaction, the transition is first order, while for a larger range of interaction, it is a second order transition. Moreover, for larger interaction ranges, the system exhibits the same features as in the case of all-to-all interaction, showing a spatially homogeneous flux when flocking phenomenon has emerged, while for lower interaction ranges, the flocking transition is characterized by cluster formation. We compute the phase diagram of the model, where we distinguish three phases as a function of the range of interaction and the effective coupling strength: a disordered phase, a spatially homogeneous flocking phase, and a cluster-flocking phase. Then, we present a general discussion about the applicability of this way of modeling to more realistic and general situations, ending with a brief presentation of a second example (a second model with a conservative interaction) where the flocking transition may be studied within the framework that we are proposing.
Collapse
Affiliation(s)
- Daniel Escaff
- Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Monse nor Alvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Rafael Delpiano
- Transportation Studies Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Monse nor Alvaro del Portillo 12455, Las Condes, Santiago, Chile
| |
Collapse
|
12
|
Sakaguchi H, Ishibashi K. Flip motion of solitary wave in an Ising-type Vicsek model. Phys Rev E 2019; 100:052113. [PMID: 31869910 DOI: 10.1103/physreve.100.052113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Indexed: 06/10/2023]
Abstract
An Ising-type Vicsek model is proposed for collective motion and sudden direction change in a population of self-propelled particles. Particles move on a linear lattice with velocity +1 or -1 in the one-dimensional model. The probability of the velocity of a particle at the next step is determined by the number difference of the right- and left-moving particles at the present lattice site and its nearest-neighboring sites. A solitary wave appears also in our model similarly to previous models. In some parameter range, the moving direction of the solitary wave sometimes changes rather suddenly, which is like the sudden change of direction of a flock of birds. We study the average reversal time of traveling direction numerically and compare the results with a mean-field theory. The one-dimensional model is generalized to a two-dimensional model. Flip motion of a bandlike soliton is observed in the two-dimensional model.
Collapse
Affiliation(s)
- Hidetsugu Sakaguchi
- Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Kazuya Ishibashi
- Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
13
|
Escaff D, Toral R, Van den Broeck C, Lindenberg K. A continuous-time persistent random walk model for flocking. CHAOS (WOODBURY, N.Y.) 2018; 28:075507. [PMID: 30070507 DOI: 10.1063/1.5027734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A classical random walker is characterized by a random position and velocity. This sort of random walk was originally proposed by Einstein to model Brownian motion and to demonstrate the existence of atoms and molecules. Such a walker represents an inanimate particle driven by environmental fluctuations. On the other hand, there are many examples of so-called "persistent random walkers," including self-propelled particles that are able to move with almost constant speed while randomly changing their direction of motion. Examples include living entities (ranging from flagellated unicellular organisms to complex animals such as birds and fish), as well as synthetic materials. Here we discuss such persistent non-interacting random walkers as a model for active particles. We also present a model that includes interactions among particles, leading to a transition to flocking, that is, to a net flux where the majority of the particles move in the same direction. Moreover, the model exhibits secondary transitions that lead to clustering and more complex spatially structured states of flocking. We analyze all these transitions in terms of bifurcations using a number of mean field strategies (all to all interaction and advection-reaction equations for the spatially structured states), and compare these results with direct numerical simulations of ensembles of these interacting active particles.
Collapse
Affiliation(s)
- Daniel Escaff
- Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Monseñor Alvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Raúl Toral
- IFISC (Instituto de Física Interdisciplinar y Sistemas Complejos), Universitat de les Illes Balears-CSIC, Palma de Mallorca 07122, Spain
| | - Christian Van den Broeck
- Hasselt University, B-3500 Hasselt, Belgium and Stellenbosch Institute for Advanced Studies, Matieland 7602, South Africa
| | - Katja Lindenberg
- Department of Chemistry and Biochemistry and BioCircuits Institute, University of California San Diego, La Jolla, California 92093-0340, USA
| |
Collapse
|
14
|
Affiliation(s)
| | - Chantal Valeriani
- Departamento de Física Aplicada I, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Angelo Cacciuto
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
15
|
Liebchen B, Levis D. Collective Behavior of Chiral Active Matter: Pattern Formation and Enhanced Flocking. PHYSICAL REVIEW LETTERS 2017; 119:058002. [PMID: 28949732 DOI: 10.1103/physrevlett.119.058002] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Indexed: 06/07/2023]
Abstract
We generalize the Vicsek model to describe the collective behavior of polar circle swimmers with local alignment interactions. While the phase transition leading to collective motion in 2D (flocking) occurs at the same interaction to noise ratio as for linear swimmers, as we show, circular motion enhances the polarization in the ordered phase (enhanced flocking) and induces secondary instabilities leading to structure formation. Slow rotations promote macroscopic droplets with late time sizes proportional to the system size (indicating phase separation) whereas fast rotations generate patterns consisting of phase synchronized microflocks with a controllable characteristic size proportional to the average single-particle swimming radius. Our results defy the viewpoint that monofrequent rotations form a vapid extension of the Vicsek model and establish a generic route to pattern formation in chiral active matter with possible applications for understanding and designing rotating microflocks.
Collapse
Affiliation(s)
- Benno Liebchen
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Demian Levis
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, E08028 Barcelona, Spain
| |
Collapse
|
16
|
Husain K, Rao M. Emergent Structures in an Active Polar Fluid: Dynamics of Shape, Scattering, and Merger. PHYSICAL REVIEW LETTERS 2017; 118:078104. [PMID: 28256860 DOI: 10.1103/physrevlett.118.078104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Indexed: 06/06/2023]
Abstract
Spatially localized defect structures emerge spontaneously in a hydrodynamic description of an active polar fluid comprising polar "actin" filaments and "myosin" motor proteins that (un)bind to filaments and exert active contractile stresses. These emergent defect structures are characterized by distinct textures and can be either static or mobile-we derive effective equations of motion for these "extended particles" and analyze their shape, kinetics, interactions, and scattering. Depending on the impact parameter and propulsion speed, these active defects undergo elastic scattering or merger. Our results are relevant for the dynamics of actomyosin-dense structures at the cell cortex, reconstituted actomyosin complexes, and 2D active colloidal gels.
Collapse
Affiliation(s)
- Kabir Husain
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore 560 065, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore 560 065, India
| |
Collapse
|
17
|
Hydrodynamic Theories for Flows of Active Liquid Crystals and the Generalized Onsager Principle. ENTROPY 2016. [DOI: 10.3390/e18060202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Putzig E, Redner GS, Baskaran A, Baskaran A. Instabilities, defects, and defect ordering in an overdamped active nematic. SOFT MATTER 2016; 12:3854-9. [PMID: 26983376 PMCID: PMC5166704 DOI: 10.1039/c6sm00268d] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We consider a phenomenological continuum theory for an extensile, overdamped active nematic liquid crystal, applicable in the dense regime. Constructed from general principles, the theory is universal, with parameters independent of any particular microscopic realization. We show that it exhibits two distinct instabilities, one of which arises due to shear forces, and the other due to active torques. Both lead to the proliferation of defects. We focus on the active torque bend instability and find three distinct nonequilibrium steady states including a defect-ordered nematic in which +½ disclinations develop polar ordering. We characterize the phenomenology of these phases and identify the relationship of this theoretical description to experimental realizations and other theoretical models of active nematics.
Collapse
Affiliation(s)
- Elias Putzig
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA.
| | | | | | | |
Collapse
|
19
|
Pototsky A, Thiele U, Stark H. Mode instabilities and dynamic patterns in a colony of self-propelled surfactant particles covering a thin liquid layer. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:51. [PMID: 27145959 DOI: 10.1140/epje/i2016-16051-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
We consider a colony of point-like self-propelled surfactant particles (swimmers) without direct interactions that cover a thin liquid layer on a solid support. The particles predominantly swim normal to the free film surface with only a small component parallel to the film surface. The coupled dynamics of the swimmer density and film height profile is captured in a long-wave model allowing for diffusive and convective transport of the swimmers (including rotational diffusion). The dynamics of the film height profile is determined by i) the upward pushing force of the swimmers onto the liquid-gas interface, ii) the solutal Marangoni force due to gradients in the swimmer concentration, and iii) the rotational diffusion of the swimmers together with the in-plane active motion. After reviewing and extending the analysis of the linear stability of the uniform state, we analyse the fully nonlinear dynamic equations and show that point-like swimmers, which only interact via long-wave deformations of the liquid film, self-organise in highly regular (standing, travelling, and modulated waves) and various irregular patterns.
Collapse
Affiliation(s)
- Andrey Pototsky
- Department of Mathematics, Faculty of Science Engineering and Technology, Swinburne University of Technology, 3122, Hawthorn, Victoria, Australia
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm Klemm Str. 9, 48149, Münster, Germany.
- Center of Nonlinear Science (CeNoS), Westfälische Wilhelms Universität Münster, Corrensstr. 2, 48149, Münster, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| |
Collapse
|
20
|
Gowrishankar K, Rao M. Nonequilibrium phase transitions, fluctuations and correlations in an active contractile polar fluid. SOFT MATTER 2016; 12:2040-2046. [PMID: 26742682 DOI: 10.1039/c5sm02527c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We study the patterning, fluctuations and correlations of an active polar fluid consisting of contractile polar filaments on a two-dimensional substrate, using a hydrodynamic description. The steady states generically consist of arrays of inward pointing asters and show a continuous transition from a moving lamellar phase, a moving aster street, to a stationary aster lattice with no net polar order. We next study the effect of spatio-temporal athermal noise, parametrized by an active temperature TA, on the stability of the ordered phases. In contrast to its equilibrium counterpart, we find that the active crystal shows true long range order at low TA. On increasing TA, the asters dynamically remodel, concomitantly we find novel phase transitions characterized by bond-orientational and polar order upon "heating".
Collapse
|
21
|
|
22
|
Hannezo E, Coucke A, Joanny JF. Interplay of migratory and division forces as a generic mechanism for stem cell patterns. Phys Rev E 2016; 93:022405. [PMID: 26986360 DOI: 10.1103/physreve.93.022405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 06/05/2023]
Abstract
In many adult tissues, stem cells and differentiated cells are not homogeneously distributed: stem cells are arranged in periodic "niches," and differentiated cells are constantly produced and migrate out of these niches. In this article, we provide a general theoretical framework to study mixtures of dividing and actively migrating particles, which we apply to biological tissues. We show in particular that the interplay between the stresses arising from active cell migration and stem cell division give rise to robust stem cell patterns. The instability of the tissue leads to spatial patterns which are either steady or oscillating in time. The wavelength of the instability has an order of magnitude consistent with the biological observations. We also discuss the implications of these results for future in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Edouard Hannezo
- Physicochimie Curie (Institut Curie/CNRS-UMR 168/UPMC), Institut Curie, Centre de Recherche, PSL Research University, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Cavendish Laboratory, 19 JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Alice Coucke
- Physicochimie Curie (Institut Curie/CNRS-UMR 168/UPMC), Institut Curie, Centre de Recherche, PSL Research University, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Laboratoire de Physique Théorique, CNRS-UMR 8549, Ecole Normale Supérieure, 24 Rue Lhomond, 75005 Paris, France
- Biologie Computationnelle et Quantitative, CNRS-UMR 7238, Sorbonne Universités, UPMC Paris 06, France
| | - Jean-François Joanny
- Physicochimie Curie (Institut Curie/CNRS-UMR 168/UPMC), Institut Curie, Centre de Recherche, PSL Research University, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- ESPCI Paris-Tech, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
23
|
Yang X, Wang Q. Role of the active viscosity and self-propelling speed in channel flows of active polar liquid crystals. SOFT MATTER 2016; 12:1262-1278. [PMID: 26583506 DOI: 10.1039/c5sm02115d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We study channel flows of active polar liquid crystals (APLCs) focusing on the role played by the active viscosity (β) and the self-propelling speed (ω) on the formation and long time evolution of spontaneous flows using a continuum model. First, we study the onset of spontaneous flows by carrying out a linear stability analysis on two special steady states subject to various physical boundary conditions. We identify a single parameter b1, proportional to a linear combination of the active viscosity and the self-propelling speed, and inversely proportional to a Frank elastic constant, the solvent viscosity, and the liquid crystal relaxation time. We show that the active viscosity and the self-propelling speed influence the onset of spontaneous flows through b1 in that for any fixed value of the bulk activity parameter ζ, large enough |b1| can suppress the spontaneous flow. We then follow spontaneous flows in long time to further investigate the role of β and ω on spatial-temporal structures in the nonlinear regime numerically. The numerical study demonstrates a strong correlation between the most unstable eigenfunction obtained from the linear analysis and the terminal steady state or the persistent, traveling wave structure, revealing the genesis of flow and orientational structures in the active matter system. In the nonlinear regime, a nonzero b1 facilitates the formation of traveling waves in the case of boundary anchoring (the Dirichlet boundary condition) so long as the linear stability analysis predicts an onset of spontaneous flows; in the case of the free boundary condition (the Neumann boundary condition), a stable, spatially homogeneous tilted state always emerges in the presence of two active effects. Finally, we note that various fully out-of-plane spatio-temporal structures can emerge in long time dynamics depending on the boundary condition as well as the initial state of the polarity vector field.
Collapse
Affiliation(s)
- Xiaogang Yang
- Beijing Computational Science Research Center, Beijing, China 100193.
| | - Qi Wang
- Beijing Computational Science Research Center, Beijing, China 100193. and Department of Mathematics, Interdisciplinary Mathematics Institute and NanoCenter at USC, University of South Carolina, Columbia, SC 29028, USA.
| |
Collapse
|
24
|
Kuan HS, Blackwell R, Hough LE, Glaser MA, Betterton MD. Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:060501. [PMID: 26764616 PMCID: PMC5064941 DOI: 10.1103/physreve.92.060501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Indexed: 05/25/2023]
Abstract
Nonequilibrium active matter made up of self-driven particles with short-range repulsive interactions is a useful minimal system to study active matter as the system exhibits collective motion and nonequilibrium order-disorder transitions. We studied high-aspect-ratio self-propelled rods over a wide range of packing fractions and driving to determine the nonequilibrium state diagram and dynamic properties. Flocking and nematic-laning states occupy much of the parameter space. In the flocking state, the average internal pressure is high and structural and mechanical relaxation times are long, suggesting that rods in flocks are in a translating glassy state despite overall flock motion. In contrast, the nematic-laning state shows fluidlike behavior. The flocking state occupies regions of the state diagram at both low and high packing fraction separated by nematic-laning at low driving and a history-dependent region at higher driving; the nematic-laning state transitions to the flocking state for both compression and expansion. We propose that the laning-flocking transitions are a type of glass transition that, in contrast to other glass-forming systems, can show fluidization as density increases. The fluid internal dynamics and ballistic transport of the nematic-laning state may promote collective dynamics of rod-shaped micro-organisms.
Collapse
Affiliation(s)
- Hui-Shun Kuan
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80302, USA
| | - Robert Blackwell
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80302, USA
| | - Loren E Hough
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80302, USA
| | - Matthew A Glaser
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80302, USA
| | - M D Betterton
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80302, USA
| |
Collapse
|
25
|
Solon AP, Caussin JB, Bartolo D, Chaté H, Tailleur J. Pattern formation in flocking models: A hydrodynamic description. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062111. [PMID: 26764636 DOI: 10.1103/physreve.92.062111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 06/05/2023]
Abstract
We study in detail the hydrodynamic theories describing the transition to collective motion in polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the existence of an infinity of propagative solutions, describing both phase and microphase separation, that we fully characterize. We also show that the same results hold specifically in the hydrodynamic equations derived in the literature for the active Ising model and for a simplified version of the Vicsek model. We then study numerically the linear stability of these solutions. We show that stable ones constitute only a small fraction of them, which, however, includes all existing types. We further argue that, in practice, a coarsening mechanism leads towards phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations proposed to qualitatively describe the Vicsek and active Ising models and connect our results to the phenomenology of the corresponding microscopic models.
Collapse
Affiliation(s)
- Alexandre P Solon
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Jean-Baptiste Caussin
- Laboratoire de Physique de l'Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS, 46, allée d'Italie, 69007 Lyon, France
| | - Denis Bartolo
- Laboratoire de Physique de l'Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS, 46, allée d'Italie, 69007 Lyon, France
| | - Hugues Chaté
- Service de Physique de l'État Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
- LPTMC, CNRS UMR 7600, Université Pierre & Marie Curie, 75252 Paris, France
- Beijing Computational Science Research Center, Beijing 100094, China
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
26
|
Hancock B, Baskaran A. Effect of reorientation statistics on torque response of self-propelled particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052143. [PMID: 26651682 DOI: 10.1103/physreve.92.052143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Indexed: 06/05/2023]
Abstract
We consider the dynamics of self-propelled particles subject to external torques. Two models for the reorientation of self-propulsion are considered: run-and-tumble particles and active Brownian particles. Using the standard tools of nonequilibrium statistical mechanics we show that the run and tumble particles have a more robust response to torques. This macroscopic signature of the underlying reorientation statistics can be used to differentiate between the two types of self-propelled particles.
Collapse
Affiliation(s)
- Benjamin Hancock
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
27
|
Solon AP, Tailleur J. Flocking with discrete symmetry: The two-dimensional active Ising model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042119. [PMID: 26565180 DOI: 10.1103/physreve.92.042119] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 06/05/2023]
Abstract
We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion biased in one of two possible directions (left and right) and align ferromagnetically their direction of motion, hence yielding a minimal flocking model with discrete rotational symmetry. We show that the transition to collective motion amounts in this model to a bona fide liquid-gas phase transition in the canonical ensemble. The phase diagram in the density-velocity parameter plane has a critical point at zero velocity which belongs to the Ising universality class. In the density-temperature "canonical" ensemble, the usual critical point of the equilibrium liquid-gas transition is sent to infinite density because the different symmetries between liquid and gas phases preclude a supercritical region. We build a continuum theory which reproduces qualitatively the behavior of the microscopic model. In particular, we predict analytically the shapes of the phase diagrams in the vicinity of the critical points, the binodal and spinodal densities at coexistence, and the speeds and shapes of the phase-separated profiles.
Collapse
Affiliation(s)
- A P Solon
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, F-75205 Paris, France
| | - J Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
28
|
Solon AP, Chaté H, Tailleur J. From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations. PHYSICAL REVIEW LETTERS 2015; 114:068101. [PMID: 25723246 DOI: 10.1103/physrevlett.114.068101] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Indexed: 06/04/2023]
Abstract
We show that the flocking transition in the Vicsek model is best understood as a liquid-gas transition, rather than an order-disorder one. The full phase separation observed in flocking models with Z(2) rotational symmetry is, however, replaced by a microphase separation leading to a smectic arrangement of traveling ordered bands. Remarkably, continuous deterministic descriptions do not account for this difference, which is only recovered at the fluctuating hydrodynamics level. Scalar and vectorial order parameters indeed produce different types of number fluctuations, which we show to be essential in selecting the inhomogeneous patterns. This highlights an unexpected role of fluctuations in the selection of flock shapes.
Collapse
Affiliation(s)
- Alexandre P Solon
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Hugues Chaté
- Service de Physique de l'État Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France and LPTMC, CNRS UMR 7600, Université Pierre et Marie Curie, 75252 Paris, France and Beijing Computational Science Research Center, 3 Heqing Road, Haidian District, Beijing 100080, China
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
29
|
Putzig E, Baskaran A. Phase separation and emergent structures in an active nematic fluid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042304. [PMID: 25375491 PMCID: PMC4459651 DOI: 10.1103/physreve.90.042304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 05/29/2023]
Abstract
We consider a phenomenological continuum theory for an active nematic fluid and show that there exists a universal, model-independent instability which renders the homogeneous nematic state unstable to order fluctuations. Using numerical and analytic tools we show that, in the vicinity of a critical point, this instability leads to a phase-separated state in which the ordered regions form bands in which the direction of nematic order is perpendicular to the direction of the density gradient. We argue that the underlying mechanism that leads to this phase separation is a universal feature of active fluids of different symmetries.
Collapse
Affiliation(s)
- Elias Putzig
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
30
|
Yang X, Wang Q. Capillary instability of axisymmetric, active liquid crystal jets. SOFT MATTER 2014; 10:6758-6776. [PMID: 25074458 DOI: 10.1039/c4sm00511b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We study linear stability of an infinitely long, axisymmetric, cylindrical active liquid crystal (ALC) jet in a passive isotropic fluid matrix using a polar active liquid crystal (ALC) model. We identify three possible unstable modes (or mechanisms) as the result of the interaction between the flow and the active (or self-propelled) molecular motion. The first unstable mode is related to the polarity vector instability when coupled to the flow field in the presence of the molecular activity. It can be traced back to the inherent polarity vector instability in a bulk active liquid crystal flow. However, it can be grossly amplified in the ALC jet to encompass up to infinitely many unstable growth rates when the long range distortional elastic interaction is weak in certain parameter regimes; it can also be suppressed in other parameter regimes completely. The second unstable mode is related to the classical capillary or Rayleigh instability, which exists in a finite wave interval [0, k(cutoff)]. The new feature for this instability lies in the dependence of the cutoff wave number (k(cutoff)) on the activity of the active matter system. For ALC jets with sufficiently strong contractile activity, the instability can be completely suppressed though. The third unstable mode is due to the active viscous stress. This unstable mode can emerge in the intermediate wave number regime at a sufficiently strong active viscosity and even expand all the way to the zero wave number limit when the Rayleigh unstable mode is absent. It can also be suppressed in the regime of weak active viscous stress. At any given values of the model parameters, the three types of instabilities can show up either individually or in a certain combination, or be completely suppressed altogether. In this paper, we discuss the positive growth rates associated with the instabilities, windows of instability and their dependence on model parameters through extensive numerical computations aided by asymptotic analyses.
Collapse
Affiliation(s)
- Xiaogang Yang
- School of Mathematical Sciences, Nankai University, Tianjin, China 300071.
| | | |
Collapse
|
31
|
Ngo S, Peshkov A, Aranson IS, Bertin E, Ginelli F, Chaté H. Large-scale chaos and fluctuations in active nematics. PHYSICAL REVIEW LETTERS 2014; 113:038302. [PMID: 25083667 DOI: 10.1103/physrevlett.113.038302] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Indexed: 06/03/2023]
Abstract
We show that dry active nematics, e.g., collections of shaken elongated granular particles, exhibit large-scale spatiotemporal chaos made of interacting dense, ordered, bandlike structures in a parameter region including the linear onset of nematic order. These results are obtained from the study of both the well-known (deterministic) hydrodynamic equations describing these systems and of the self-propelled particle model they were derived from. We prove, in particular, that the chaos stems from the generic instability of the band solution of the hydrodynamic equations. Revisiting the status of the strong fluctuations and long-range correlations in the particle model, we show that the giant number fluctuations observed in the chaotic phase are a trivial consequence of density segregation. However anomalous, curvature-driven number fluctuations are present in the homogeneous quasiordered nematic phase and characterized by a nontrivial scaling exponent.
Collapse
Affiliation(s)
- Sandrine Ngo
- Service de Physique de l'Etat Condensé, CNRS URA 2464, CEA-Saclay, 91191 Gif-sur-Yvette, France and Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany and SUPA, Physics Department, IPAM and Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Anton Peshkov
- Service de Physique de l'Etat Condensé, CNRS URA 2464, CEA-Saclay, 91191 Gif-sur-Yvette, France and Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany and LPTMC, CNRS UMR 7600, Université Pierre et Marie Curie, 75252 Paris, France
| | - Igor S Aranson
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany and Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Eric Bertin
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany and Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier Grenoble, CNRS UMR 5588, BP 87, 38402 Saint-Martin d'Hères, France and Université de Lyon, Laboratoire de Physique, ENS Lyon, CNRS, 46 allée d'Italie, 69007 Lyon, France
| | - Francesco Ginelli
- SUPA, Physics Department, IPAM and Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CNRS URA 2464, CEA-Saclay, 91191 Gif-sur-Yvette, France and Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany and LPTMC, CNRS UMR 7600, Université Pierre et Marie Curie, 75252 Paris, France
| |
Collapse
|
32
|
Mallory SA, Šarić A, Valeriani C, Cacciuto A. Anomalous thermomechanical properties of a self-propelled colloidal fluid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052303. [PMID: 25353796 DOI: 10.1103/physreve.89.052303] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Indexed: 06/04/2023]
Abstract
We use numerical simulations to compute the equation of state of a suspension of spherical self-propelled nanoparticles in two and three dimensions. We study in detail the effect of excluded volume interactions and confinement as a function of the system's temperature, concentration, and strength of the propulsion. We find a striking nonmonotonic dependence of the pressure on the temperature and provide simple scaling arguments to predict and explain the occurrence of such anomalous behavior. We explicitly show how our results have important implications for the effective forces on passive components suspended in a bath of active particles.
Collapse
Affiliation(s)
- S A Mallory
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - A Šarić
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - C Valeriani
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - A Cacciuto
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
33
|
Caussin JB, Solon A, Peshkov A, Chaté H, Dauxois T, Tailleur J, Vitelli V, Bartolo D. Emergent spatial structures in flocking models: a dynamical system insight. PHYSICAL REVIEW LETTERS 2014; 112:148102. [PMID: 24766020 DOI: 10.1103/physrevlett.112.148102] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Indexed: 06/03/2023]
Abstract
We show that hydrodynamic theories of polar active matter generically possess inhomogeneous traveling solutions. We introduce a unifying dynamical-system framework to establish the shape of these intrinsically nonlinear patterns, and show that they correspond to those hitherto observed in experiments and numerical simulation: periodic density waves, and solitonic bands, or polar-liquid droplets both cruising in isotropic phases. We elucidate their respective multiplicity and mutual relations, as well as their existence domain.
Collapse
Affiliation(s)
- Jean-Baptiste Caussin
- Laboratoire de Physique de l'Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS, 46, Allée d'Italie, 69007 Lyon, France
| | - Alexandre Solon
- Université Paris Diderot, Sorbonne Paris Cité, MSC, CNRS, 75205 Paris, France
| | - Anton Peshkov
- LPTMC, CNRS, Université Pierre et Marie Curie, 75252 Paris, France and Service de Physique de l'Etat Condensé, CEA-Saclay, CNRS, 91191 Gif-sur-Yvettes, France and Max Planck Institute for Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Hugues Chaté
- LPTMC, CNRS, Université Pierre et Marie Curie, 75252 Paris, France and Service de Physique de l'Etat Condensé, CEA-Saclay, CNRS, 91191 Gif-sur-Yvettes, France and Max Planck Institute for Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Thierry Dauxois
- Laboratoire de Physique de l'Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS, 46, Allée d'Italie, 69007 Lyon, France
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, CNRS, 75205 Paris, France
| | - Vincenzo Vitelli
- Instituut-Lorenz for Theoretical Physics, Universiteit Leiden, 2300 RA Leiden, Netherlands
| | - Denis Bartolo
- Laboratoire de Physique de l'Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS, 46, Allée d'Italie, 69007 Lyon, France
| |
Collapse
|
34
|
Yamanaka S, Ohta T. Formation and collision of traveling bands in interacting deformable self-propelled particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012918. [PMID: 24580308 DOI: 10.1103/physreve.89.012918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 06/03/2023]
Abstract
We study the collective dynamics of interacting deformable self-propelled particles whose migration velocity increases with increasing local density. In two-dimensional numerical simulations of this system, the local density dependence on migration velocity leads to traveling bands similar to those previously reported for Vicsek-type models. We show that a pair of straight bands moving in opposite directions survives a head-on collision. Although traveling bands also appear in systems of constant migration velocity subjected to random noise, they are found to be unstable in a head-on collision.
Collapse
Affiliation(s)
- Sadato Yamanaka
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan and Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Takao Ohta
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan and Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan and Soft Matter Center, Ochanomizu University, Tokyo 112-0012, Japan
| |
Collapse
|
35
|
Pilkiewicz KR, Eaves JD. Flocking with minimal cooperativity: the panic model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012718. [PMID: 24580268 DOI: 10.1103/physreve.89.012718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Indexed: 06/03/2023]
Abstract
We present a two-dimensional lattice model of self-propelled spins that can change direction only upon collision with another spin. We show that even with ballistic motion and minimal cooperativity, these spins display robust flocking behavior at nearly all densities, forming long bands of stripes. The structural transition in this system is not a thermodynamic phase transition, but it can still be characterized by an order parameter, and we demonstrate that if this parameter is studied as a dynamical variable rather than a steady-state observable, we can extract a detailed picture of how the flocking mechanism varies with density.
Collapse
Affiliation(s)
| | - Joel D Eaves
- University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
36
|
Ihle T. Invasion-wave-induced first-order phase transition in systems of active particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:040303. [PMID: 24229097 DOI: 10.1103/physreve.88.040303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Indexed: 06/02/2023]
Abstract
An instability near the transition to collective motion of self-propelled particles is studied numerically by Enskog-like kinetic theory. While hydrodynamics breaks down, the kinetic approach leads to steep solitonlike waves. These supersonic waves show hysteresis and lead to an abrupt jump of the global order parameter if the noise level is changed. Thus they provide a mean-field mechanism to change the second-order character of the phase transition to first order. The shape of the wave is shown to follow a scaling law and to quantitatively agree with agent-based simulations.
Collapse
Affiliation(s)
- Thomas Ihle
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
37
|
Solon AP, Tailleur J. Revisiting the flocking transition using active spins. PHYSICAL REVIEW LETTERS 2013; 111:078101. [PMID: 23992085 DOI: 10.1103/physrevlett.111.078101] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Indexed: 06/02/2023]
Abstract
We consider an active Ising model in which spins both diffuse and align on lattice in one and two dimensions. The diffusion is biased so that plus or minus spins hop preferably to the left or to the right, which generates a flocking transition at low temperature and high density. We construct a coarse-grained description of the model that predicts this transition to be a first-order liquid-gas transition in the temperature-density ensemble, with a critical density sent to infinity. In this first-order phase transition, the magnetization is proportional to the liquid fraction and thus varies continuously throughout the phase diagram. Using microscopic simulations, we show that this theoretical prediction holds in 2D whereas the fluctuations alter the transition in 1D, preventing, for instance, any spontaneous symmetry breaking.
Collapse
Affiliation(s)
- A P Solon
- Université Paris Diderot, Sorbonne Paris Cite, MSC, UMR 7057 CNRS, F75205 Paris, France
| | | |
Collapse
|
38
|
Redner GS, Baskaran A, Hagan MF. Reentrant phase behavior in active colloids with attraction. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012305. [PMID: 23944461 DOI: 10.1103/physreve.88.012305] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Indexed: 05/07/2023]
Abstract
Motivated by recent experiments, we study a system of self-propelled colloids that experience short-range attractive interactions and are confined to a surface. Using simulations we find that the phase behavior for such a system is reentrant as a function of activity: phase-separated states exist in both the low- and high-activity regimes, with a homogeneous active fluid in between. To understand the physical origins of reentrance, we develop a kinetic model for the system's steady-state dynamics whose solution captures the main features of the phase behavior. We also describe the varied kinetics of phase separation, which range from the familiar nucleation and growth of clusters to the complex coarsening of active particle gels.
Collapse
Affiliation(s)
- Gabriel S Redner
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
39
|
Chepizhko O, Altmann EG, Peruani F. Optimal noise maximizes collective motion in heterogeneous media. PHYSICAL REVIEW LETTERS 2013; 110:238101. [PMID: 25167531 DOI: 10.1103/physrevlett.110.238101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Indexed: 06/03/2023]
Abstract
We study the effect of spatial heterogeneity on the collective motion of self-propelled particles (SPPs). The heterogeneity is modeled as a random distribution of either static or diffusive obstacles, which the SPPs avoid while trying to align their movements. We find that such obstacles have a dramatic effect on the collective dynamics of usual SPP models. In particular, we report about the existence of an optimal (angular) noise amplitude that maximizes collective motion. We also show that while at low obstacle densities the system exhibits long-range order, in strongly heterogeneous media collective motion is quasi-long-range and exists only for noise values in between two critical values, with the system being disordered at both large and low noise amplitudes. Since most real systems have spatial heterogeneities, the finding of an optimal noise intensity has immediate practical and fundamental implications for the design and evolution of collective motion strategies.
Collapse
Affiliation(s)
- Oleksandr Chepizhko
- Department for Theoretical Physics, Odessa National University, Dvoryanskaya 2, 65026 Odessa, Ukraine and Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany and Laboratoire J. A. Dieudonné, Université de Nice Sophia Antipolis, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France
| | - Eduardo G Altmann
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Fernando Peruani
- Laboratoire J. A. Dieudonné, Université de Nice Sophia Antipolis, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France
| |
Collapse
|
40
|
Redner GS, Hagan MF, Baskaran A. Structure and dynamics of a phase-separating active colloidal fluid. PHYSICAL REVIEW LETTERS 2013; 110:055701. [PMID: 23414035 DOI: 10.1103/physrevlett.110.055701] [Citation(s) in RCA: 470] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Indexed: 05/07/2023]
Abstract
We examine a minimal model for an active colloidal fluid in the form of self-propelled Brownian spheres that interact purely through excluded volume with no aligning interaction. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium active system undergoes an analog of an equilibrium continuous phase transition, with a binodal curve beneath which the system separates into dense and dilute phases whose concentrations depend only on activity. The dense phase is a unique material that we call an active solid, which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, and anomalous dynamics including superdiffusive motion on intermediate time scales.
Collapse
Affiliation(s)
- Gabriel S Redner
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
41
|
Peshkov A, Aranson IS, Bertin E, Chaté H, Ginelli F. Nonlinear field equations for aligning self-propelled rods. PHYSICAL REVIEW LETTERS 2012; 109:268701. [PMID: 23368625 DOI: 10.1103/physrevlett.109.268701] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Indexed: 06/01/2023]
Abstract
We derive a set of minimal and well-behaved nonlinear field equations describing the collective properties of self-propelled rods from a simple microscopic starting point, the Vicsek model with nematic alignment. Analysis of their linear and nonlinear dynamics shows good agreement with the original microscopic model. In particular, we derive an explicit expression for density-segregated, banded solutions, allowing us to develop a more complete analytic picture of the problem at the nonlinear level.
Collapse
Affiliation(s)
- Anton Peshkov
- Service de Physique de l'Etat Condensé, CEA-Saclay, URA 2464 CNRS, 91191 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
42
|
Ngo S, Ginelli F, Chaté H. Competing ferromagnetic and nematic alignment in self-propelled polar particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:050101. [PMID: 23214726 DOI: 10.1103/physreve.86.050101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Indexed: 06/01/2023]
Abstract
We study a Vicsek-style model of self-propelled particles where ferromagnetic and nematic alignment compete in both the usual "metric" version and in the "metric-free" case where a particle interacts with its Voronoi neighbors. We show that the phase diagram of this out-of-equilibrium XY model is similar to that of its equilibrium counterpart: The properties of the fully nematic model, studied before by Ginelli et al. [Phys. Rev. Lett. 104, 184502 (2010)], are thus robust to the introduction of a modest bias of interactions toward ferromagnetic alignment. The direct transitions between polar and nematic ordered phases are shown to be discontinuous in the metric case, and continuous, belonging to the Ising universality class, in the metric-free version.
Collapse
Affiliation(s)
- Sandrine Ngo
- Service de Physique de l'État Condensé, CEA-Saclay, F-91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
43
|
Baskaran A, Marchetti MC. Self-regulation in self-propelled nematic fluids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:95. [PMID: 23053844 DOI: 10.1140/epje/i2012-12095-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/08/2012] [Accepted: 08/09/2012] [Indexed: 06/01/2023]
Abstract
We consider the hydrodynamic theory of an active fluid of self-propelled particles with nematic aligning interactions. This class of materials has polar symmetry at the microscopic level, but forms macrostates of nematic symmetry. We highlight three key features of the dynamics. First, as in polar active fluids, the control parameter for the order-disorder transition, namely the density, is dynamically convected by the order parameter via active currents. The resulting dynamical self-regulation of the order parameter is a generic property of active fluids and destabilizes the uniform nematic state near the mean-field transition. Secondly, curvature-driven currents render the system unstable deep in the nematic state, as found previously. Finally, and unique to self-propelled nematics, nematic order induces local polar order that in turn leads to the growth of density fluctuations. We propose this as a possible mechanism for the smectic order of polar clusters seen in numerical simulations.
Collapse
Affiliation(s)
- A Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, MA, USA.
| | | |
Collapse
|
44
|
Peshkov A, Ngo S, Bertin E, Chaté H, Ginelli F. Continuous theory of active matter systems with metric-free interactions. PHYSICAL REVIEW LETTERS 2012; 109:098101. [PMID: 23002888 DOI: 10.1103/physrevlett.109.098101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Indexed: 06/01/2023]
Abstract
We derive a hydrodynamic description of metric-free active matter: starting from self-propelled particles aligning with neighbors defined by "topological" rules, not metric zones-a situation advocated recently to be relevant for bird flocks, fish schools, and crowds-we use a kinetic approach to obtain well-controlled nonlinear field equations. We show that the density-independent collision rate per particle characteristic of topological interactions suppresses the linear instability of the homogeneous ordered phase and the nonlinear density segregation generically present near threshold in metric models, in agreement with microscopic simulations.
Collapse
Affiliation(s)
- Anton Peshkov
- Service de Physique de l'Etat Condensé, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|