1
|
Chen Y, Gibelli L, Borg MK. Impact of random nanoscale roughness on gas-scattering dynamics. Phys Rev E 2024; 109:065308. [PMID: 39020882 DOI: 10.1103/physreve.109.065308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
The impact of nanoscale wall roughness on rarefied gas transport is widely acknowledged, yet the associated scattering dynamics largely remain elusive. In this paper, we develop a scattering kernel for surfaces having nanoscale roughness that distinctly characterizes the two major types of interactions between gas molecules and rough surfaces. Namely these are (a) the weak perturbations arising from the thermal motion of wall atoms, essentially gas-phonon collisions, which are captured by the well-established Cercignani-Lampis model, and (b) the hard collisions owing to the irregularities of the rough, static potential energy surface, which are generally described by the fully diffuse model. Drawing an analogy between wave-surface and gas-surface scattering, a pseudo Debye-Waller factor is incorporated into the modeling as a weighting coefficient to allow the transition between smooth and rough surface conditions. The proposed scattering kernel is validated through high-fidelity molecular dynamics simulations that are performed for systems with varying roughness, temperature, and gas-surface combinations. The results indicate that the model well captures the scattering dynamics of gas molecular beams impinging on surfaces at different velocities, specifically for the accommodation coefficients and reflection patterns. Additionally, in flow and heat transport cases, it accurately predicts macroscopic quantities such as velocity slip and temperature jumps across the range of tested conditions.
Collapse
|
2
|
Sun M, Chen W, Qin L, Xie XM. The Effect of Colloidal Nanoparticles on Phase Separation of Block and Heteroarm Star Copolymers Confined between Polymer Brushes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:804. [PMID: 38399056 PMCID: PMC10890131 DOI: 10.3390/ma17040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
The effect of colloidal nanoparticles on the phase changes of the amphiphilic AB linear diblock, A1A2B, and A2B heteroarm star copolymers confined between two polymer brush substrates was investigated by using a real-space self-consistent field theory. By changing the concentrations of nanoparticles and polymer brushes, the phase structure of the amphiphilic AB copolymer transforms from lamellar to core-shell hexagonal phase to cylinder phase. The pattern of A2B heteroarm star copolymer changes from core-shell hexagonal phases to lamellar phases and the layer decreases when increasing the density of the polymer brushes. The results showed that the phase behavior of the system is strongly influenced by the polymer brush architecture and the colloidal nanoparticle numbers. The colloidal nanoparticles and the soft confined surface of polymer brushes make amphiphilic AB copolymers easier to form ordered structures. The dispersion of the nanoparticles was also investigated in detail. The soft surfaces of polymer brushes and the conformation of the block copolymers work together to force the nanoparticles to disperse evenly. It will give helpful guidance for making some new functional materials by nano etching technology, nano photoresist, and nanoprinting.
Collapse
Affiliation(s)
- Minna Sun
- Beijing Key Laboratory for Sensors, Beijing Information Science and Technology University, Beijing 100192, China;
- Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China;
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenyu Chen
- Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China;
| | - Lei Qin
- Beijing Key Laboratory for Sensors, Beijing Information Science and Technology University, Beijing 100192, China;
- Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China;
| | - Xu-Ming Xie
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Zhang J, Zou Z, Fu C. A Review of the Complex Flow and Heat Transfer Characteristics in Microchannels. MICROMACHINES 2023; 14:1451. [PMID: 37512762 PMCID: PMC10384330 DOI: 10.3390/mi14071451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Continuously improving heat transfer efficiency is one of the important goals in the field of energy. Compact heat exchangers characterized by microscale flow and heat transfer have successfully provided solutions for this purpose. However, as the characteristic scale of the channels decreases, the flow and heat transfer characteristics may differ from those at the conventional scale. When considering the influence of scale effects and changes in special fluid properties, the flow and heat transfer process becomes more complex. The conclusions of the relevant studies have not been unified, and there are even disagreements on some aspects. Therefore, further research is needed to obtain a sufficient understanding of flow structure and heat transfer mechanisms in microchannels. This article systematically reviews the research about microscale flow and heat transfer, focusing on the flow and heat transfer mechanisms in microchannels, which is elaborated in the following two perspectives: one is the microscale single-phase flow and heat transfer that only considers the influence of scale effects, the other is the special heat transfer phenomena brought about by the coupling of microscale flow with special fluids (fluid with phase change (pseudophase change)). The microscale flow and heat transfer mechanisms under the influence of multiple factors, including scale effects (such as rarefaction, surface roughness, axial heat conduction, and compressibility) and special fluids, are investigated, which can meet the specific needs for the design of various microscale heat exchangers.
Collapse
Affiliation(s)
- Junqiang Zhang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Zhengping Zou
- National Key Laboratory of Science and Technology on Aero-Engine and Aero-Thermodynamics, Beihang University, Beijing 100191, China
- Research Institute of Aero-Engine, Beihang University, Beijing 102206, China
| | - Chao Fu
- National Key Laboratory of Science and Technology on Aero-Engine and Aero-Thermodynamics, Beihang University, Beijing 100191, China
- Research Institute of Aero-Engine, Beihang University, Beijing 102206, China
| |
Collapse
|
4
|
Cheng Z, Ning Z, Kang DH. Lattice Boltzmann simulation of water flow through rough nanopores. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Hydrothermal performance analysis of various surface roughness configurations in trapezoidal microchannels at slip flow regime. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Pore-scale study of the effects of surface roughness on relative permeability of rock fractures using lattice Boltzmann method. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Surblys D, Kawagoe Y, Shibahara M, Ohara T. Molecular dynamics investigation of surface roughness scale effect on interfacial thermal conductance at solid-liquid interfaces. J Chem Phys 2019; 150:114705. [PMID: 30902019 DOI: 10.1063/1.5081103] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-equilibrium molecular dynamics simulations were conducted for solid-liquid-solid systems with nanometer scale grooved surfaces and an induced heat flux for a wide range of topology and solid-liquid interaction conditions to investigate the mechanism of solid-liquid heat transfer, which is the first work of such extensive detail done about the nanoscale roughness effect on heat transfer properties. Single-atom molecules were used for liquid, and the solid-liquid interaction was varied from superhydrophobic to superhydrophilic, while the groove scale was varied from single atom to several nanometers, while keeping the surface area twice that of a flat surface. Both Wenzel and Cassie wetting regimes with a clear transition point were observed due to the capillary effect inside larger grooves that were more than 5 liquid molecule diameters, while such transition was not observed at smaller scales. At the hydrophobic state, large scale grooves had lower interfacial thermal conductance (ITC) due to the Cassie regime, i.e., having unfilled grooves, while at the hydrophilic state, grooved surfaces had ITC about twice that of a flat surface, indicating an extended heat transfer surface effect regardless of the groove scale. At the superhydrophilic state, crystallization of liquid at the surface occurred, and the packing of liquid molecules had a substantial effect on ITC regardless of the groove scale. Finally, both potential energy of solid-liquid interaction and work of solid-liquid adhesion were calculated and were shown to be in similar relations to ITC for all groove scales, except for the smallest single-atom scale grooves, due to a different heat transfer mechanism.
Collapse
Affiliation(s)
- Donatas Surblys
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yoshiaki Kawagoe
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masahiko Shibahara
- Department of Mechanical Engineering, Osaka University, Yamadaoka 2-1, 565-0871 Suita, Japan
| | - Taku Ohara
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
8
|
Optimization of the Melting Performance of a Thermal Energy Storage Unit with Fractal Net Fins. Processes (Basel) 2019. [DOI: 10.3390/pr7010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, fractal net fins were introduced to improve the melting performance of a thermal energy storage unit. A transient model for melting heat transfer for phase change material (PCM) was presented and numerically analyzed, to study the melting performance in a thermal energy storage unit using fractal net fins. The melting phase change process was modelled using the apparent heat capacity method. The evolutions of temperature and the liquid fraction in the thermal energy storage unit were investigated and discussed. The effects of the length and width ratios of the fractal net on melting performance were analyzed to obtain the optimal fin configuration. The results indicated that the fractal net fins significantly enhanced the melting heat transfer performance of the PCM in a thermal energy storage unit. The fractal net fins configuration was optimal when the length and width ratios of the fractal net were 0.5. The temperature response at the corner points of the fractal net fins was faster than that in the central points.
Collapse
|
9
|
Experimental Study on the Evaporation and Condensation Heat Transfer Characteristics of a Vapor Chamber. ENERGIES 2018. [DOI: 10.3390/en12010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A vapor chamber can meet the cooling requirements of high heat flux electronic equipment. In this paper, based on a proposed vapor chamber with a side window, a vapor chamber experimental system was designed to visually study its evaporation and condensation heat transfer performance. Using infrared thermal imaging technology, the temperature distribution and the vapor–liquid two-phase interface evolution inside the cavity were experimentally observed. Furthermore, the evaporation and condensation heat transfer coefficients were obtained according to the measured temperature of the liquid near the evaporator surface and the vapor near the condenser surface. The effects of heat load and filling rate on the thermal resistance and the evaporation and condensation heat transfer coefficients are analyzed and discussed. The results indicate that the liquid filling rate that maximized the evaporation heat transfer coefficient was different from the liquid filling rate that maximized the condensation heat transfer coefficient. The vapor chamber showed good heat transfer performance with a liquid filling rate of 33%. According to the infrared thermal images, it was observed that the evaporation/boiling heat transfer could be strengthened by the interference of easily broken bubbles and boiling liquid. When the heat input increased, the uniformity of temperature distribution was improved due to the intensified heat transfer on the evaporator surface.
Collapse
|
10
|
Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels. MICROMACHINES 2018; 9:mi9120663. [PMID: 30558345 PMCID: PMC6315815 DOI: 10.3390/mi9120663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/02/2022]
Abstract
A two-dimensional molecular dynamics model of the liquid flow inside rough nanochannels is developed to investigate the effect of a solid wall on the interface slip of liquid in nanochannels with a surface roughness constructed by rectangular protrusions. The liquid structure, velocity profile, and confined scale on the boundary slip in a rough nanochannel are investigated, and the comparison of those with a smooth nanochannel are presented. The influence of solid wall properties, including the solid wall density, wall-fluid coupling strength, roughness height and spacing, on the interfacial velocity slip are all analyzed and discussed. It is indicated that the rough surface induces a smaller magnitude of the density oscillations and extra energy losses compared with the smooth solid surface, which reduce the interfacial slip of liquid in a nanochannel. In addition, once the roughness spacing is very small, the near-surface liquid flow dominates the momentum transfer at the interface between liquid and solid wall, causing the role of both the corrugation of wall potential and wall-fluid coupling strength to be less obvious. In particular, the slip length increases with increasing confined scales and shows no dependence on the confined scale once the confined scale reaches a critical value. The critical confined scale for the rough channel is larger than that of the smooth scale.
Collapse
|
11
|
Zheng Q, Fan J, Li X, Xu C. Fractal analysis of the effect of rough surface morphology on gas slip flow in micro- and nano- porous media. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.05.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Abstract
The dendritic fin was introduced to improve the solid-liquid phase change in heat exchangers. A theoretical model of melting phase change in dendritic heat exchangers was developed and numerically simulated. The solid-liquid phase interface, liquid phase rate and dynamic temperature change in dendritic heat exchanger during melting process are investigated and compared with radial-fin heat exchanger. The results indicate that the dendritic fin is able to enhance the solid-liquid phase change in heat exchanger for latent thermal storage. The presence of dendritic fin leads to the formation of multiple independent PCM zones, so the heat can be quickly diffused from one point to across the surface along the metal fins, thereby making the PCM far away from heat sources melt earlier and faster. In addition, the dendritic structure makes the PCM temperature distribution more uniform over the entire zone inside heat exchangers due to high-efficient heat flow distribution of dendritic fins. As a result, the time required for the complete melting of the PCM in dendritic heat exchanger is shorter than that of the radial-fin heat exchanger.
Collapse
|
13
|
Visualization Study on Thermo-Hydrodynamic Behaviors of a Flat Two-Phase Thermosyphon. ENERGIES 2018. [DOI: 10.3390/en11092295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coupled effect of boiling and condensation inside a flat two-phase thermosyphon has a non-negligible influence on the two-phase fluid flow behavior and heat transfer process. Therefore, a flat two-phase thermosyphon with transparent wall was manufactured. Based on this device, a visualization experiment system was developed to study the vapor–liquid two-phase behaviors and thermal performance of the flat two-phase thermosyphon. A cross-shaped wick using copper mesh was embedded into the cavity of two-phase thermosyphon to improve the heat transfer performance. The effects of heat flux density, working medium, and wick structure on the thermal performance are examined and analyzed. The results indicated that a strong liquid disturbance is caused by the bubble motions, leading to the enhancement of both convective boiling and condensation heat transfer. More bubbles are generated as the heat flux increases; therefore, the disturbance of bubble motion on liquid pool and condensation film becomes stronger, resulting in better thermal performance of the flat two-phase thermosyphon. The addition of the wick inside the cavity effectively reduces the temperature oscillation of the evaporator wall. In addition, the wick structure provides backflow paths for the condensate owing to the effect of capillary force and enhances the vapor–liquid phase change heat transfer, resulting in the improvement of thermal performance for the flat two-phase thermosyphon.
Collapse
|
14
|
Visualization Study of Startup Modes and Operating States of a Flat Two-Phase Micro Thermosyphon. ENERGIES 2018. [DOI: 10.3390/en11092291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The flat two-phase thermosyphon has been recognized as a promising technique to realize uniform heat dissipation for high-heat-flux electronic devices. In this paper, a visualization experiment is designed and conducted to study the startup modes and operating states in a flat two-phase thermosyphon. The dynamic wall temperatures and gas–liquid interface evolution are observed and analyzed. From the results, the sudden startup and gradual startup modes and three quasi-steady operating states are identified. As the heat load increases, the continuous large-amplitude pulsation, alternate pulsation, and continuous small-amplitude pulsation states are experienced in sequence for the evaporator wall temperature. The alternate pulsation state can be divided into two types of alternate pulsation: lengthy single-large-amplitude-pulsation alternated with short multiple-small-amplitude-pulsation, and short single-large-amplitude-pulsation alternated with lengthy multiple-small-amplitude alternate pulsation state. During the continuous large-amplitude pulsation state, the bubbles were generated intermittently and the wall temperature fluctuated cyclically with a continuous large amplitude. In the alternate pulsation state, the duration of boiling became longer compared to the continuous large-amplitude pulsation state, and the wall temperature of the evaporator section exhibited small fluctuations. In addition, there was no large-amplitude wall temperature pulsation in the continuous small-amplitude pulsation state, and the boiling occurred continuously. The thermal performance of the alternate pulsation state in a flat two-phase thermosyphon is inferior to the continuous small-amplitude pulsation state but superior to the continuous large-amplitude pulsation state.
Collapse
|
15
|
Deng Z, Chen Y, Shao C. Gas flow through rough microchannels in the transition flow regime. Phys Rev E 2016; 93:013128. [PMID: 26871175 DOI: 10.1103/physreve.93.013128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 11/07/2022]
Abstract
A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height.
Collapse
Affiliation(s)
- Zilong Deng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Yongping Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chenxi Shao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
16
|
Dorari E, Saffar-Avval M, Mansoori Z. Numerical simulation of gas flow and heat transfer in a rough microchannel using the lattice Boltzmann method. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063034. [PMID: 26764830 DOI: 10.1103/physreve.92.063034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 06/05/2023]
Abstract
In microfluidics, two important factors responsible for the differences between the characteristics of the flow and heat transfer in microchannels and conventional channels are rarefaction and surface roughness which are studied in the present work. An incompressible gas flow in a microchannel is simulated two dimensionally using the lattice Boltzmann method. The flow is in the slip regime and surface roughness is modeled by both regular and Gaussian random distribution of rectangular modules. The effects of relative surface roughness height and Knudsen number on gaseous flow and heat transfer are studied. It was shown that as the relative roughness height increases, the Poiseuille number increases and the Nusselt number has a decreasing or increasing trend, depending on the degree of rarefaction. A comparison between the flow and heat transfer characteristics in regular and random distribution of surface roughness demonstrates that in regular roughness, circular flows are more pronounced; Poiseuille number is higher and Nusselt number is lower than that of its equivalent random roughness.
Collapse
Affiliation(s)
- Elaheh Dorari
- Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Majid Saffar-Avval
- Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Mansoori
- Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|