1
|
Molina A, Prakash M. Droplet tilings in precessive fields: hysteresis, elastic defects, and annealing. SOFT MATTER 2024; 20:6730-6741. [PMID: 38922641 DOI: 10.1039/d4sm00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Two-component Marangoni contracted droplets can be arranged into arbitrary two-dimensional tiling patterns where they display rich dynamics due to vapor-mediated long-range interactions. Recent work has characterized the centered hexagonal honeycomb lattice, showing it to be a highly frustrated system with many metastable states and relaxation occurring over multiple timescales [Molina et al., Proc. Natl. Acad. Sci. U. S. A., 2021, 118, e2020014118]. Here, we study this system under the influence of a rotating gravitational field. High amplitudes are able to completely disrupt droplet-droplet interactions, making it possible to identify a transition between field-dominated and interaction-dominated regimes. The system displays complex hysteresis behavior, the details of which are connected to the emergence of linear mesoscale structures. These mesoscale features display an elasticity that is governed by the balance between gravity and long-range vapor-mediated attractions. We find that disorder plays an important role in determining the dynamics of these features. Finally, we demonstrate annealing the system by progressively reducing the field amplitude, a process that reduces configurational energy compared to a rapid quench. The ability to manipulate vapor-mediated interactions in deliberately designed droplet tilings provides a novel platform for table-top explorations of multi-body interactions.
Collapse
Affiliation(s)
- Anton Molina
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA.
| | - Manu Prakash
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA.
| |
Collapse
|
2
|
Aldrin BE, Khaleque A. Hysteresis and return point memory in the random-field Blume-Capel model. Phys Rev E 2022; 106:014129. [PMID: 35974541 DOI: 10.1103/physreve.106.014129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
We study the zero-temperature steady-state of the random-field Blume-Capel model with spin-flip Glauber dynamics on a random regular graph. The magnetization m as a function of the external field H is observed to have double hysteresis loops with a return point memory. We also solve the model on a Bethe lattice in the approximation that the spin relaxation dynamics is abelian and find good agreement between simulations on random regular graphs and Bethe lattice calculations for negative values of H.
Collapse
Affiliation(s)
- B E Aldrin
- School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abdul Khaleque
- Department of Physics, Bidhan Chandra College, University of Calcutta, Kolkata 712248, India
| |
Collapse
|
3
|
Oğuz EC, Ortiz-Ambriz A, Shem-Tov H, Babià-Soler E, Tierno P, Shokef Y. Topology Restricts Quasidegeneracy in Sheared Square Colloidal Ice. PHYSICAL REVIEW LETTERS 2020; 124:238003. [PMID: 32603179 DOI: 10.1103/physrevlett.124.238003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Recovery of ground-state degeneracy in two-dimensional square ice is a significant challenge in the field of geometric frustration with far-reaching fundamental implications, such as realization of vertex models and understanding the effect of dimensionality reduction. We combine experiments, theory, and numerical simulations to demonstrate that sheared square colloidal ice partially recovers the ground-state degeneracy for a wide range of field strengths and lattice shear angles. Our method could inspire engineering a novel class of frustrated microstructures and nanostructures based on sheared magnetic lattices in a wide range of soft- and condensed-matter systems.
Collapse
Affiliation(s)
- Erdal C Oğuz
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
- Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Antonio Ortiz-Ambriz
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Hadas Shem-Tov
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eric Babià-Soler
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona 08028, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona 08028, Spain
| | - Yair Shokef
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
4
|
Magnetization dynamics of weakly interacting sub-100 nm square artificial spin ices. Sci Rep 2019; 9:19967. [PMID: 31882867 PMCID: PMC6934880 DOI: 10.1038/s41598-019-56219-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/06/2019] [Indexed: 12/02/2022] Open
Abstract
Artificial Spin Ice (ASI), consisting of a two dimensional array of nanoscale magnetic elements, provides a fascinating opportunity to observe the physics of out-of-equilibrium systems. Initial studies concentrated on the static, frozen state, whilst more recent studies have accessed the out-of-equilibrium dynamic, fluctuating state. This opens up exciting possibilities such as the observation of systems exploring their energy landscape through monopole quasiparticle creation, potentially leading to ASI magnetricity, and to directly observe unconventional phase transitions. In this work we have measured and analysed the magnetic relaxation of thermally active ASI systems by means of SQUID magnetometry. We have investigated the effect of the interaction strength on the magnetization dynamics at different temperatures in the range where the nanomagnets are thermally active. We have observed that they follow an Arrhenius-type Néel-Brown behaviour. An unexpected negative correlation of the average blocking temperature with the interaction strength is also observed, which is supported by Monte Carlo simulations. The magnetization relaxation measurements show faster relaxation for more strongly coupled nanoelements with similar dimensions. The analysis of the stretching exponents obtained from the measurements suggest 1-D chain-like magnetization dynamics. This indicates that the nature of the interactions between nanoelements lowers the dimensionality of the ASI from 2-D to 1-D. Finally, we present a way to quantify the effective interaction energy of a square ASI system, and compare it to the interaction energy computed with micromagnetic simulations.
Collapse
|
5
|
Mungan M, Sastry S, Dahmen K, Regev I. Networks and Hierarchies: How Amorphous Materials Learn to Remember. PHYSICAL REVIEW LETTERS 2019; 123:178002. [PMID: 31702267 DOI: 10.1103/physrevlett.123.178002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 06/10/2023]
Abstract
We consider the slow and athermal deformations of amorphous solids and show how the ensuing sequence of discrete plastic rearrangements can be mapped onto a directed network. The network topology reveals a set of highly connected regions joined by occasional one-way transitions. The highly connected regions include hierarchically organized hysteresis cycles and subcycles. At small to moderate strains this organization leads to near-perfect return point memory. The transitions in the network can be traced back to localized particle rearrangements (soft spots) that interact via Eshelby-type deformation fields. By linking topology to dynamics, the network representations provide new insight into the mechanisms that lead to reversible and irreversible behavior in amorphous solids.
Collapse
Affiliation(s)
- Muhittin Mungan
- Institut für angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
| | - Srikanth Sastry
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkar Campus, 560064 Bengaluru, India
| | - Karin Dahmen
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA
| | - Ido Regev
- Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| |
Collapse
|
6
|
Libál A, Lee DY, Ortiz-Ambriz A, Reichhardt C, Reichhardt CJO, Tierno P, Nisoli C. Ice rule fragility via topological charge transfer in artificial colloidal ice. Nat Commun 2018; 9:4146. [PMID: 30297820 PMCID: PMC6175946 DOI: 10.1038/s41467-018-06631-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/05/2018] [Indexed: 11/09/2022] Open
Abstract
Artificial particle ices are model systems of constrained, interacting particles. They have been introduced theoretically to study ice-manifolds emergent from frustration, along with domain wall and grain boundary dynamics, doping, pinning-depinning, controlled transport of topological defects, avalanches, and memory effects. Recently such particle-based ices have been experimentally realized with vortices in nano-patterned superconductors or gravitationally trapped colloids. Here we demonstrate that, although these ices are generally considered equivalent to magnetic spin ices, they can access a novel spectrum of phenomenologies that are inaccessible to the latter. With experiments, theory and simulations we demonstrate that in mixed coordination geometries, entropy-driven negative monopoles spontaneously appear at a density determined by the vertex-mixture ratio. Unlike its spin-based analogue, the colloidal system displays a "fragile ice" manifold, where local energetics oppose the ice rule, which is instead enforced through conservation of the global topological charge. The fragile colloidal ice, stabilized by topology, can be spontaneously broken by topological charge transfer.
Collapse
Affiliation(s)
- András Libál
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Mathematics and Computer Science Department, Babeş-Bolyai University, Cluj, 400084, Romania
| | - Dong Yun Lee
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, 08028, España
| | - Antonio Ortiz-Ambriz
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, 08028, España.,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Charles Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, 08028, España.,Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, 08028, Spain.,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Cristiano Nisoli
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA. .,Institute for Materials Science, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
7
|
Nisoli C. Unexpected Phenomenology in Particle-Based Ice Absent in Magnetic Spin Ice. PHYSICAL REVIEW LETTERS 2018; 120:167205. [PMID: 29756919 DOI: 10.1103/physrevlett.120.167205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 06/08/2023]
Abstract
While particle-based ices are often considered essentially equivalent to magnet-based spin ices, the two differ essentially in frustration and energetics. We show that at equilibrium particle-based ices correspond exactly to spin ices coupled to a background field. In trivial geometries, such a field has no effect, and the two systems are indeed thermodynamically equivalent. In other cases, however, the field controls a richer phenomenology, absent in magnetic ices, and still largely unexplored: ice rule fragility, topological charge transfer, radial polarization, decimation induced disorder, and glassiness.
Collapse
Affiliation(s)
- Cristiano Nisoli
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
8
|
Concha A, Aguayo D, Mellado P. Designing Hysteresis with Dipolar Chains. PHYSICAL REVIEW LETTERS 2018; 120:157202. [PMID: 29756885 DOI: 10.1103/physrevlett.120.157202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 06/08/2023]
Abstract
Materials that have hysteretic response to an external field are essential in modern information storage and processing technologies. A myriad of magnetization curves of several natural and artificial materials have previously been measured and each has found a particular mechanism that accounts for it. However, a phenomenological model that captures all the hysteresis loops and at the same time provides a simple way to design the magnetic response of a material while remaining minimal is missing. Here, we propose and experimentally demonstrate an elementary method to engineer hysteresis loops in metamaterials built out of dipolar chains. We show that by tuning the interactions of the system and its geometry we can shape the hysteresis loop which allows for the design of the softness of a magnetic material at will. Additionally, this mechanism allows for the control of the number of loops aimed to realize multiple-valued logic technologies. Our findings pave the way for the rational design of hysteretical responses in a variety of physical systems such as dipolar cold atoms, ferroelectrics, or artificial magnetic lattices, among others.
Collapse
Affiliation(s)
- Andrés Concha
- Condensed Matter i-Lab, Diagonal las torres 2640, Building D, Peñalolen, Santiago 7941169, Chile
- School of Engineering and Sciences, Adolfo Ibáñez University, Santiago 7941169, Chile
| | - David Aguayo
- Condensed Matter i-Lab, Diagonal las torres 2640, Building D, Peñalolen, Santiago 7941169, Chile
- School of Engineering and Sciences, Adolfo Ibáñez University, Santiago 7941169, Chile
| | - Paula Mellado
- Condensed Matter i-Lab, Diagonal las torres 2640, Building D, Peñalolen, Santiago 7941169, Chile
- School of Engineering and Sciences, Adolfo Ibáñez University, Santiago 7941169, Chile
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| |
Collapse
|
9
|
Libál A, Nisoli C, Reichhardt CJO, Reichhardt C. Inner Phases of Colloidal Hexagonal Spin Ice. PHYSICAL REVIEW LETTERS 2018; 120:027204. [PMID: 29376707 DOI: 10.1103/physrevlett.120.027204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Using numerical simulations that mimic recent experiments on hexagonal colloidal ice, we show that colloidal hexagonal artificial spin ice exhibits an inner phase within its ice state that has not been observed previously. Under increasing colloid-colloid repulsion, the initially paramagnetic system crosses into a disordered ice regime, then forms a topologically charge ordered state with disordered colloids, and finally reaches a threefold degenerate, ordered ferromagnetic state. This is reminiscent of, yet distinct from, the inner phases of the magnetic kagome spin ice analog. The difference in the inner phases of the two systems is explained by their difference in energetics and frustration.
Collapse
Affiliation(s)
- A Libál
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Mathematics and Computer Science Department, Babeş-Bolyai University, Cluj 400084, Romania
| | - C Nisoli
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
10
|
Dynamic Control of Topological Defects in Artificial Colloidal Ice. Sci Rep 2017; 7:651. [PMID: 28381863 PMCID: PMC5428472 DOI: 10.1038/s41598-017-00452-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/27/2017] [Indexed: 11/23/2022] Open
Abstract
We demonstrate the use of an external field to stabilize and control defect lines connecting topological monopoles in spin ice. For definiteness we perform Brownian dynamics simulations with realistic units mimicking experimentally realized artificial colloidal spin ice systems, and show how defect lines can grow, shrink or move under the action of direct and alternating fields. Asymmetric alternating biasing forces can cause the defect line to ratchet in either direction, making it possible to precisely position the line at a desired location. Such manipulation could be employed to achieve mobile information storage in these metamaterials.
Collapse
|
11
|
Loehr J, Ortiz-Ambriz A, Tierno P. Defect Dynamics in Artificial Colloidal Ice: Real-Time Observation, Manipulation, and Logic Gate. PHYSICAL REVIEW LETTERS 2016; 117:168001. [PMID: 27792372 DOI: 10.1103/physrevlett.117.168001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 06/06/2023]
Abstract
We study the defect dynamics in a colloidal spin ice system realized by filling a square lattice of topographic double well islands with repulsively interacting magnetic colloids. We focus on the contraction of defects in the ground state, and contraction or expansion in a metastable biased state. Combining real-time experiments with simulations, we prove that these defects behave like emergent topological monopoles obeying a Coulomb law with an additional line tension. We further show how to realize a completely resettable "nor" gate, which provides guidelines for fabrication of nanoscale logic devices based on the motion of topological magnetic monopoles.
Collapse
Affiliation(s)
- Johannes Loehr
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
- Physikalisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Antonio Ortiz-Ambriz
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, Barcelona 08028, Spain
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
12
|
Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices. Nat Commun 2016; 7:10575. [PMID: 26830629 PMCID: PMC4740443 DOI: 10.1038/ncomms10575] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/30/2015] [Indexed: 11/09/2022] Open
Abstract
Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information. Visualizing the dynamics of electron spins in frustrated systems is a challenging task, which may require an alternative way at the microscale. Here, the authors realize an artificial system composed of interacting colloidal particles to mimick frustrated spins, which is potentially helpful in information storage.
Collapse
|
13
|
Fiocco D, Foffi G, Sastry S. Encoding of memory in sheared amorphous solids. PHYSICAL REVIEW LETTERS 2014; 112:025702. [PMID: 24484027 DOI: 10.1103/physrevlett.112.025702] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Indexed: 06/03/2023]
Abstract
We show that memory can be encoded in a model amorphous solid subjected to athermal oscillatory shear deformations, and in an analogous spin model with disordered interactions, sharing the feature of a deformable energy landscape. When these systems are subjected to oscillatory shear deformation, they retain memory of the deformation amplitude imposed in the training phase, when the amplitude is below a "localization" threshold. Remarkably, multiple persistent memories can be stored using such an athermal, noise-free, protocol. The possibility of such memory is shown to be linked to the presence of plastic deformations and associated limit cycles traversed by the system, which exhibit avalanche statistics also seen in related contexts.
Collapse
Affiliation(s)
- Davide Fiocco
- Institute of Theoretical Physics (ITP), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Giuseppe Foffi
- Institute of Theoretical Physics (ITP), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland and Laboratoire de Physique de Solides, UMR 8502, Bât. 510, Université Paris-Sud, F-91405 Orsay, France
| | - Srikanth Sastry
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, 500075 Hyderabad, India and Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, 560064 Bangalore, India
| |
Collapse
|
14
|
Heyderman LJ, Stamps RL. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:363201. [PMID: 23948652 DOI: 10.1088/0953-8984/25/36/363201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lithographic processing and film growth technologies are continuing to advance, so that it is now possible to create patterned ferroic materials consisting of arrays of sub-1 μm elements with high definition. Some of the most fascinating behaviour of these arrays can be realised by exploiting interactions between the individual elements to create new functionality. The properties of these artificial ferroic systems differ strikingly from those of their constituent components, with novel emergent behaviour arising from the collective dynamics of the interacting elements, which are arranged in specific designs and can be activated by applying magnetic or electric fields. We first focus on artificial spin systems consisting of arrays of dipolar-coupled nanomagnets and, in particular, review the field of artificial spin ice, which demonstrates a wide range of fascinating phenomena arising from the frustration inherent in particular arrangements of nanomagnets, including emergent magnetic monopoles, domains of ordered macrospins, and novel avalanche behaviour. We outline how demagnetisation protocols have been employed as an effective thermal anneal in an attempt to reach the ground state, comment on phenomena that arise in thermally activated systems and discuss strategies for selectively generating specific configurations using applied magnetic fields. We then move on from slow field and temperature driven dynamics to high frequency phenomena, discussing spinwave excitations in the context of magnonic crystals constructed from arrays of patterned magnetic elements. At high frequencies, these arrays are studied in terms of potential applications including magnetic logic, linear and non-linear microwave optics, and fast, efficient switching, and we consider the possibility to create tunable magnonic crystals with artificial spin ice. Finally, we discuss how functional ferroic composites can be incorporated to realise magnetoelectric effects. Specifically, we discuss artificial multiferroics (or multiferroic composites), which hold promise for new applications that involve electric field control of magnetism, or electric and magnetic field responsive devices for high frequency integrated circuit design in microwave and terahertz signal processing. We close with comments on how enhanced functionality can be realised through engineering of nanostructures with interacting ferroic components, creating opportunities for novel spin electronic devices that, for example, make use of the transport of magnetic charges, thermally activated elements, and reprogrammable nanomagnet systems.
Collapse
Affiliation(s)
- L J Heyderman
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
| | | |
Collapse
|