1
|
Duque CM, Hall DM, Tyukodi B, Hagan MF, Santangelo CD, Grason GM. Limits of economy and fidelity for programmable assembly of size-controlled triply periodic polyhedra. Proc Natl Acad Sci U S A 2024; 121:e2315648121. [PMID: 38669182 PMCID: PMC11067059 DOI: 10.1073/pnas.2315648121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
We propose and investigate an extension of the Caspar-Klug symmetry principles for viral capsid assembly to the programmable assembly of size-controlled triply periodic polyhedra, discrete variants of the Primitive, Diamond, and Gyroid cubic minimal surfaces. Inspired by a recent class of programmable DNA origami colloids, we demonstrate that the economy of design in these crystalline assemblies-in terms of the growth of the number of distinct particle species required with the increased size-scale (e.g., periodicity)-is comparable to viral shells. We further test the role of geometric specificity in these assemblies via dynamical assembly simulations, which show that conditions for simultaneously efficient and high-fidelity assembly require an intermediate degree of flexibility of local angles and lengths in programmed assembly. Off-target misassembly occurs via incorporation of a variant of disclination defects, generalized to the case of hyperbolic crystals. The possibility of these topological defects is a direct consequence of the very same symmetry principles that underlie the economical design, exposing a basic tradeoff between design economy and fidelity of programmable, size controlled assembly.
Collapse
Affiliation(s)
- Carlos M. Duque
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
- Department of Physics, University of Massachusetts, Amherst, MA01003
| | - Douglas M. Hall
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA01003
| | - Botond Tyukodi
- Department of Physics, Babes-Bolyai University, Cluj-Napoca400084, Romania
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
| | - Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
| | - Christian D. Santangelo
- Department of Physics, University of Massachusetts, Amherst, MA01003
- Department of Physics, Syracuse University, Syracuse, NY13210
| | - Gregory M. Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA01003
| |
Collapse
|
2
|
Asor R, Singaram SW, Levi-Kalisman Y, Hagan MF, Raviv U. Effect of ionic strength on the assembly of simian vacuolating virus capsid protein around poly(styrene sulfonate). THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:107. [PMID: 37917241 DOI: 10.1140/epje/s10189-023-00363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Surendra W Singaram
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Michael F Hagan
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA.
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel.
| |
Collapse
|
3
|
Nilsson LB, Sun F, Kadupitiya JCS, Jadhao V. Molecular Dynamics Simulations of Deformable Viral Capsomers. Viruses 2023; 15:1672. [PMID: 37632014 PMCID: PMC10459744 DOI: 10.3390/v15081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Most coarse-grained models of individual capsomers associated with viruses employ rigid building blocks that do not exhibit shape adaptation during self-assembly. We develop a coarse-grained general model of viral capsomers that incorporates their stretching and bending energies while retaining many features of the rigid-body models, including an overall trapezoidal shape with attractive interaction sites embedded in the lateral walls to favor icosahedral capsid assembly. Molecular dynamics simulations of deformable capsomers reproduce the rich self-assembly behavior associated with a general T=1 icosahedral virus system in the absence of a genome. Transitions from non-assembled configurations to icosahedral capsids to kinetically-trapped malformed structures are observed as the steric attraction between capsomers is increased. An assembly diagram in the space of capsomer-capsomer steric attraction and capsomer deformability reveals that assembling capsomers of higher deformability into capsids requires increasingly large steric attraction between capsomers. Increasing capsomer deformability can reverse incorrect capsomer-capsomer binding, facilitating transitions from malformed structures to symmetric capsids; however, making capsomers too soft inhibits assembly and yields fluid-like structures.
Collapse
Affiliation(s)
| | | | | | - Vikram Jadhao
- Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA; (L.B.N.); (F.S.); (J.C.S.K.)
| |
Collapse
|
4
|
Lynch D, Pavlova A, Fan Z, Gumbart JC. Understanding Virus Structure and Dynamics through Molecular Simulations. J Chem Theory Comput 2023; 19:3025-3036. [PMID: 37192279 PMCID: PMC10269348 DOI: 10.1021/acs.jctc.3c00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Viral outbreaks remain a serious threat to human and animal populations and motivate the continued development of antiviral drugs and vaccines, which in turn benefits from a detailed understanding of both viral structure and dynamics. While great strides have been made in characterizing these systems experimentally, molecular simulations have proven to be an essential, complementary approach. In this work, we review the contributions of molecular simulations to the understanding of viral structure, functional dynamics, and processes related to the viral life cycle. Approaches ranging from coarse-grained to all-atom representations are discussed, including current efforts at modeling complete viral systems. Overall, this review demonstrates that computational virology plays an essential role in understanding these systems.
Collapse
Affiliation(s)
- Diane
L. Lynch
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zixing Fan
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Hagan MF, Mohajerani F. Self-assembly coupled to liquid-liquid phase separation. PLoS Comput Biol 2023; 19:e1010652. [PMID: 37186597 PMCID: PMC10212142 DOI: 10.1371/journal.pcbi.1010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/25/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Liquid condensate droplets with distinct compositions of proteins and nucleic acids are widespread in biological cells. While it is known that such droplets, or compartments, can regulate irreversible protein aggregation, their effect on reversible self-assembly remains largely unexplored. In this article, we use kinetic theory and solution thermodynamics to investigate the effect of liquid-liquid phase separation on the reversible self-assembly of structures with well-defined sizes and architectures. We find that, when assembling subunits preferentially partition into liquid compartments, robustness against kinetic traps and maximum achievable assembly rates can be significantly increased. In particular, both the range of solution conditions leading to productive assembly and the corresponding assembly rates can increase by orders of magnitude. We analyze the rate equation predictions using simple scaling estimates to identify effects of liquid-liquid phase separation as a function of relevant control parameters. These results may elucidate self-assembly processes that underlie normal cellular functions or pathogenesis, and suggest strategies for designing efficient bottom-up assembly for nanomaterials applications.
Collapse
Affiliation(s)
- Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
6
|
Mohajerani F, Tyukodi B, Schlicksup CJ, Hadden-Perilla JA, Zlotnick A, Hagan MF. Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism. ACS NANO 2022; 16:13845-13859. [PMID: 36054910 PMCID: PMC10273259 DOI: 10.1021/acsnano.2c02119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar-Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein-protein binding affinities.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
| | - Botond Tyukodi
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
- Department of Physics, Babeş-Bolyai University, 400084Cluj-Napoca, Romania
| | - Christopher J Schlicksup
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana47405, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware19716, United States
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana47405, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
| |
Collapse
|
7
|
Tsidilkovski L, Mohajerani F, Hagan MF. Microcompartment assembly around multicomponent fluid cargoes. J Chem Phys 2022; 156:245104. [PMID: 35778087 PMCID: PMC9249432 DOI: 10.1063/5.0089556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article describes dynamical simulations of the assembly of an icosahedral protein shell around a bicomponent fluid cargo. Our simulations are motivated by bacterial microcompartments, which are protein shells found in bacteria that assemble around a complex of enzymes and other components involved in certain metabolic processes. The simulations demonstrate that the relative interaction strengths among the different cargo species play a key role in determining the amount of each species that is encapsulated, their spatial organization, and the nature of the shell assembly pathways. However, the shell protein–shell protein and shell protein–cargo component interactions that help drive assembly and encapsulation also influence cargo composition within certain parameter regimes. These behaviors are governed by a combination of thermodynamic and kinetic effects. In addition to elucidating how natural microcompartments encapsulate multiple components involved within reaction cascades, these results have implications for efforts in synthetic biology to colocalize alternative sets of molecules within microcompartments to accelerate specific reactions. More broadly, the results suggest that coupling between self-assembly and multicomponent liquid–liquid phase separation may play a role in the organization of the cellular cytoplasm.
Collapse
Affiliation(s)
- Lev Tsidilkovski
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
8
|
Jana AK, May ER. Atomistic dynamics of a viral infection process: Release of membrane lytic peptides from a non-enveloped virus. SCIENCE ADVANCES 2021; 7:7/16/eabe1761. [PMID: 33853772 PMCID: PMC8046363 DOI: 10.1126/sciadv.abe1761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/23/2021] [Indexed: 05/13/2023]
Abstract
Molecular simulations have played an instrumental role in uncovering the structural dynamics and physical properties of virus capsids. In this work, we move beyond equilibrium physicochemical characterization of a virus system to study a stage of the infection process that is required for viral proliferation. Despite many biochemical and functional studies, the molecular mechanism of host cell entry by non-enveloped viruses remains largely unresolved. Flock House virus (FHV) is a model system for non-enveloped viruses and is the subject of the current study. FHV infects through the acid-dependent endocytic pathway, where low pH triggers externalization of membrane-disrupting (γ) peptides from the capsid interior. Using all-atom equilibrium and enhanced sampling simulations, the mechanism and energetics of γ peptide liberation and the effect of pH on this process are investigated. Our computations agree with experimental findings and reveal nanoscopic details regarding the pH control mechanism, which are not readily accessible in experiments.
Collapse
Affiliation(s)
- Asis K Jana
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
9
|
Mohajerani F, Sayer E, Neil C, Inlow K, Hagan MF. Mechanisms of Scaffold-Mediated Microcompartment Assembly and Size Control. ACS NANO 2021; 15:4197-4212. [PMID: 33683101 PMCID: PMC8058603 DOI: 10.1021/acsnano.0c05715] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article describes a theoretical and computational study of the dynamical assembly of a protein shell around a complex consisting of many cargo molecules and long, flexible scaffold molecules. Our study is motivated by bacterial microcompartments, which are proteinaceous organelles that assemble around a condensed droplet of enzymes and reactants. As in many examples of cytoplasmic liquid-liquid phase separation, condensation of the microcompartment interior cargo is driven by flexible scaffold proteins that have weak multivalent interactions with the cargo. Our results predict that the shell size, amount of encapsulated cargo, and assembly pathways depend sensitively on properties of the scaffold, including its length and valency of scaffold-cargo interactions. Moreover, the ability of self-assembling protein shells to change their size to accommodate scaffold molecules of different lengths depends crucially on whether the spontaneous curvature radius of the protein shell is smaller or larger than a characteristic elastic length scale of the shell. Beyond natural microcompartments, these results have important implications for synthetic biology efforts to target alternative molecules for encapsulation by microcompartments or viral shells. More broadly, the results elucidate how cells exploit coupling between self-assembly and liquid-liquid phase separation to organize their interiors.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Evan Sayer
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Christopher Neil
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
10
|
Should Virus Capsids Assemble Perfectly? Theory and Observation of Defects. Biophys J 2020; 119:1781-1790. [PMID: 33113349 DOI: 10.1016/j.bpj.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 01/20/2023] Open
Abstract
Although published structural models of viral capsids generally exhibit a high degree of regularity or symmetry, structural defects might be expected because of the fluctuating environment in which capsids assemble and the requirement of some capsids for disassembly before genome delivery. Defective structures are observed in computer simulations, and are evident in single-particle cryoelectron microscopy studies. Here, we quantify the conditions under which defects might be expected, using a statistical mechanics model allowing for ideal, defective, and vacant sites. The model displays a threshold in affinity parameters below which there is an appreciable population of defective capsids. Even when defective sites are not allowed, there is generally some population of vacancies. Analysis of single particles in cryoelectron microscopy micrographs yields a confirmatory ≳15% of defective particles. Our findings suggest structural heterogeneity in virus capsids may be under-appreciated, and also points to a nontraditional strategy for assembly inhibition.
Collapse
|
11
|
Valbuena A, Maity S, Mateu MG, Roos WH. Visualization of Single Molecules Building a Viral Capsid Protein Lattice through Stochastic Pathways. ACS NANO 2020; 14:8724-8734. [PMID: 32633498 PMCID: PMC7392527 DOI: 10.1021/acsnano.0c03207] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 05/20/2023]
Abstract
Direct visualization of pathways followed by single molecules while they spontaneously self-assemble into supramolecular biological machines may provide fundamental knowledge to guide molecular therapeutics and the bottom-up design of nanomaterials and nanodevices. Here, high-speed atomic force microscopy is used to visualize self-assembly of the bidimensional lattice of protein molecules that constitutes the framework of the mature human immunodeficiency virus capsid. By real-time imaging of the assembly reaction, individual transient intermediates and reaction pathways followed by single molecules could be revealed. As when assembling a jigsaw puzzle, the capsid protein lattice is randomly built. Lattice patches grow independently from separate nucleation events whereby individual molecules follow different paths. Protein subunits can be added individually, while others form oligomers before joining a lattice or are occasionally removed from the latter. Direct real-time imaging of supramolecular self-assembly has revealed a complex, chaotic process involving multiple routes followed by individual molecules that are inaccessible to bulk (averaging) techniques.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro
de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Sourav Maity
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
| | - Mauricio G. Mateu
- Centro
de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Wouter H. Roos
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
| |
Collapse
|
12
|
Marson RL, Teich EG, Dshemuchadse J, Glotzer SC, Larson RG. Computational self-assembly of colloidal crystals from Platonic polyhedral sphere clusters. SOFT MATTER 2019; 15:6288-6299. [PMID: 31334736 DOI: 10.1039/c9sm00664h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We explore a rich phase space of crystals self-assembled from colloidal "polyhedral sphere clusters (PSCs)," each of which consists of equal-sized "halo" spheres placed at the vertices of a polyhedron such that they just touch along each edge. Such clusters, created experimentally by fusing spheres, can facilitate assembly of useful colloidal crystal symmetries not attainable by unclustered spheres. While not crucial for their self-assembly, the center of the PSC can contain a "core" particle that can be used as a scaffold to build the PSC. Using Brownian dynamics simulations, we show the self-assembly of eight distinct crystalline phases from PSCs that correspond to the five Platonic polyhedra, and that are made of spheres with purely repulsive interactions. Strong crystalline order is seen in the centers of mass of the PSCs, or equivalently the core particles. The halo particles also may organize into crystal structures, usually with weaker crystalline order than the core particles. Notably, however, in crystals assembled from the octahedral and icosahedral PSCs, the halo particles are also well ordered, nesting within the crystals formed by the cores. Interestingly, despite the rounded nature of the PSCs, in some cases we obtain structures similar to those of the corresponding faceted polyhedra interacting only via excluded volume. Only the tetrahedral PSCs fail to self-assemble into a crystal, but we demonstrate that a pre-assembled crystal - whose halo particles sit on a close-packed face-centered cubic lattice, and whose core particles form a diamond structure - is stable at high density and melts into a hexagonal phase at lower density.
Collapse
Affiliation(s)
- Ryan L Marson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
13
|
Lázaro GR, Mukhopadhyay S, Hagan MF. Why Enveloped Viruses Need Cores-The Contribution of a Nucleocapsid Core to Viral Budding. Biophys J 2019; 114:619-630. [PMID: 29414708 DOI: 10.1016/j.bpj.2017.11.3782] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/11/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022] Open
Abstract
During the lifecycle of many enveloped viruses, a nucleocapsid core buds through the cell membrane to acquire an outer envelope of lipid membrane and viral glycoproteins. However, the presence of a nucleocapsid core is not required for assembly of infectious particles. To determine the role of the nucleocapsid core, we develop a coarse-grained computational model with which we investigate budding dynamics as a function of glycoprotein and nucleocapsid interactions, as well as budding in the absence of a nucleocapsid. We find that there is a transition between glycoprotein-directed budding and nucleocapsid-directed budding that occurs above a threshold strength of nucleocapsid interactions. The simulations predict that glycoprotein-directed budding leads to significantly increased size polydispersity and particle polymorphism. This polydispersity can be explained by a theoretical model accounting for the competition between bending energy of the membrane and the glycoprotein shell. The simulations also show that the geometry of a budding particle leads to a barrier to subunit diffusion, which can result in a stalled, partially budded state. We present a phase diagram for this and other morphologies of budded particles. Comparison of these structures against experiments could establish bounds on whether budding is directed by glycoprotein or nucleocapsid interactions. Although our model is motivated by alphaviruses, we discuss implications of our results for other enveloped viruses.
Collapse
Affiliation(s)
- Guillermo R Lázaro
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts
| | | | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts.
| |
Collapse
|
14
|
Molecular dynamics study of T = 3 capsid assembly. J Biol Phys 2018; 44:147-162. [PMID: 29607454 DOI: 10.1007/s10867-018-9486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/16/2018] [Indexed: 02/08/2023] Open
Abstract
Molecular dynamics simulation is used to model the self-assembly of polyhedral shells containing 180 trapezoidal particles that correspond to the T = 3 virus capsid. Three kinds of particle, differing only slightly in shape, are used to account for the effect of quasi-equivalence. Bond formation between particles is reversible and an explicit atomistic solvent is included. Under suitable conditions the simulations are able to produce complete shells, with the majority of unused particles remaining as monomers, and practically no other clusters. There are also no incorrectly assembled clusters. The simulations reveal details of intermediate structures along the growth pathway, information that is relevant for interpreting experiment.
Collapse
|
15
|
Angelescu DG. Role of polyion length in the co-assembly of stoichiometric viral-like nanoparticles. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Michaels TCT, Bellaiche MMJ, Hagan MF, Knowles TPJ. Kinetic constraints on self-assembly into closed supramolecular structures. Sci Rep 2017; 7:12295. [PMID: 28947758 PMCID: PMC5613031 DOI: 10.1038/s41598-017-12528-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/04/2017] [Indexed: 11/09/2022] Open
Abstract
Many biological and synthetic systems exploit self-assembly to generate highly intricate closed supramolecular architectures, ranging from self-assembling cages to viral capsids. The fundamental design principles that control the structural determinants of the resulting assemblies are increasingly well-understood, but much less is known about the kinetics of such assembly phenomena and it remains a key challenge to elucidate how these systems can be engineered to assemble in an efficient manner and avoid kinetic trapping. We show here that simple scaling laws emerge from a set of kinetic equations describing the self-assembly of identical building blocks into closed supramolecular structures and that this scaling behavior provides general rules that determine efficient assembly in these systems. Using this framework, we uncover the existence of a narrow range of parameter space that supports efficient self-assembly and reveal that nature capitalizes on this behavior to direct the reliable assembly of viral capsids on biologically relevant timescales.
Collapse
Affiliation(s)
- Thomas C T Michaels
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Mathias M J Bellaiche
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Laboratory of Chemical Physics, National Institute of Digestive and Diabetes and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, MA, 02454, USA
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. .,Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 1HE, United Kingdom.
| |
Collapse
|
17
|
Biswal D, Kusalik PG. Molecular simulations of self-assembly processes in metal-organic frameworks: Model dependence. J Chem Phys 2017; 147:044702. [PMID: 28764378 DOI: 10.1063/1.4994700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Molecular simulation is a powerful tool for investigating microscopic behavior in various chemical systems, where the use of suitable models is critical to successfully reproduce the structural and dynamic properties of the real systems of interest. In this context, molecular dynamics simulation studies of self-assembly processes in metal-organic frameworks (MOFs), a well-known class of porous materials with interesting chemical and physical properties, are relatively challenging, where a reasonably accurate representation of metal-ligand interactions is anticipated to play an important role. In the current study, we both investigate the performance of some existing models and introduce and test new models to help explore the self-assembly in an archetypal Zn-carboxylate MOF system. To this end, the behavior of six different Zn-ion models, three solvent models, and two ligand models was examined and validated against key experimental structural parameters. To explore longer time scale ordering events during MOF self-assembly via explicit solvent simulations, it is necessary to identify a suitable combination of simplified model components representing metal ions, organic ligands, and solvent molecules. It was observed that an extended cationic dummy atom (ECDA) Zn-ion model combined with an all-atom carboxylate ligand model and a simple dipolar solvent model can reproduce characteristic experimental structures for the archetypal MOF system. The successful use of these models in extensive sets of molecular simulations, which provide key insights into the self-assembly mechanism of this archetypal MOF system occurring during the early stages of this process, has been very recently reported.
Collapse
Affiliation(s)
- Debasmita Biswal
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Peter G Kusalik
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
18
|
Angelescu DG. Assembled viral-like nanoparticles from elastic capsomers and polyion. J Chem Phys 2017; 146:134902. [DOI: 10.1063/1.4979496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
Biswal D, Kusalik PG. Probing Molecular Mechanisms of Self-Assembly in Metal-Organic Frameworks. ACS NANO 2017; 11:258-268. [PMID: 27997790 DOI: 10.1021/acsnano.6b05444] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Metal-organic framework materials (MOFs) are a class of nanoporous materials, important to many applications (e.g., gas storage, separation), and their synthesis has received considerable attention. Yet, very little is known about the mechanisms of self-assembly of MOFs. Here, we provide molecular-level insights into the previously unexplored behavior of the self-assembly process, through molecular dynamics simulations, for an archetypal Zn-carboxylate MOF system exhibiting complex vertex topologies (e.g., paddle-wheel clusters). A key finding of this study is the characterization of a stochastic and multistage ordering process intrinsic to self-assembly of the Zn-carboxylate MOF system. A variety of transient intermediate structures consisting of various types of Zn-ion clusters and carboxylate-ligand coordination, and featuring a range of geometric arrangements, are observed during structural evolution. The general features deduced here for the mechanism of the self-assembly of this archetypal MOF system expose the complexities of the various molecular-level events that can occur during the early stages of this process spanning time scales of nano- to microseconds. More generally, we provide fundamental insights that elucidate key aspects of the early stages of the self-assembly mechanism for an important class of nanoporous materials, and of experimental studies exploring nucleation and growth processes in such materials.
Collapse
Affiliation(s)
- Debasmita Biswal
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Peter G Kusalik
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
20
|
Snijder J, Kononova O, Barbu IM, Uetrecht C, Rurup WF, Burnley RJ, Koay MST, Cornelissen JJLM, Roos WH, Barsegov V, Wuite GJL, Heck AJR. Assembly and Mechanical Properties of the Cargo-Free and Cargo-Loaded Bacterial Nanocompartment Encapsulin. Biomacromolecules 2016; 17:2522-9. [DOI: 10.1021/acs.biomac.6b00469] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Natuur-
en Sterrenkunde and LaserLab, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands
| | - Olga Kononova
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Moscow Institute
of Physics
and Technology, Moscow Region, Russia 141700
| | - Ioana M. Barbu
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Charlotte Uetrecht
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - W. Frederik Rurup
- Department
of Biomolecular Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Rebecca J. Burnley
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Melissa S. T. Koay
- Department
of Biomolecular Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jeroen J. L. M. Cornelissen
- Department
of Biomolecular Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wouter H. Roos
- Natuur-
en Sterrenkunde and LaserLab, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands
- Moleculaire
Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Valeri Barsegov
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Moscow Institute
of Physics
and Technology, Moscow Region, Russia 141700
| | - Gijs J. L. Wuite
- Natuur-
en Sterrenkunde and LaserLab, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
21
|
Aznar M, Reguera D. Physical Ingredients Controlling Stability and Structural Selection of Empty Viral Capsids. J Phys Chem B 2016; 120:6147-59. [PMID: 27114062 DOI: 10.1021/acs.jpcb.6b02150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the crucial steps in the viral replication cycle is the self-assembly of its protein shell. Typically, each native virus adopts a unique architecture, but the coat proteins of many viruses have the capability to self-assemble in vitro into different structures by changing the assembly conditions. However, the mechanisms determining which of the possible capsid shapes and structures is selected by a virus are still not well-known. We present a coarse-grained model to analyze and understand the physical mechanisms controlling the size and structure selection in the assembly of empty viral capsids. Using this model and Monte Carlo simulations, we have characterized the phase diagram and stability of T = 1,3,4,7 and snub cube shells. In addition, we have studied the tolerance of different shells to changes in physical parameters related to ambient conditions, identifying possible strategies to induce misassembly or failure. Finally, we discuss the factors that select the shape of a capsid as spherical, faceted, elongated, or decapsidated. Our model sheds important light on the ingredients that control the assembly and stability of viral shells. This knowledge is essential to get capsids with well-defined size and structure that could be used for promising applications in medicine or bionanotechnology.
Collapse
Affiliation(s)
- María Aznar
- Statistical and Interdisciplinary Physics Section, Departament de Física de la Matèria Condensada, Universitat de Barcelona , Martí i Franquès 1, 08028 - Barcelona, Spain
| | - David Reguera
- Statistical and Interdisciplinary Physics Section, Departament de Física de la Matèria Condensada, Universitat de Barcelona , Martí i Franquès 1, 08028 - Barcelona, Spain
| |
Collapse
|
22
|
Hagan MF, Zandi R. Recent advances in coarse-grained modeling of virus assembly. Curr Opin Virol 2016; 18:36-43. [PMID: 27016708 DOI: 10.1016/j.coviro.2016.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA.
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA.
| |
Collapse
|
23
|
Abstract
Two kinds of cone-shaped particles are designed: one with a Janus structure and the other with a sandwich structure. The effects of the cone angle and particle structure (i.e. AB type and BAB type) on the kinetic pathway and assembled structures are discussed.
Collapse
Affiliation(s)
- Yali Wang
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300350
- China
| | - Xuehao He
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300350
- China
| |
Collapse
|
24
|
Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 2015; 31:64-74. [PMID: 25845770 DOI: 10.1016/j.sbi.2015.03.007] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/11/2022]
Abstract
Connecting dynamics to structural data from diverse experimental sources, molecular dynamics simulations permit the exploration of biological phenomena in unparalleled detail. Advances in simulations are moving the atomic resolution descriptions of biological systems into the million-to-billion atom regime, in which numerous cell functions reside. In this opinion, we review the progress, driven by large-scale molecular dynamics simulations, in the study of viruses, ribosomes, bioenergetic systems, and other diverse applications. These examples highlight the utility of molecular dynamics simulations in the critical task of relating atomic detail to the function of supramolecular complexes, a task that cannot be achieved by smaller-scale simulations or existing experimental approaches alone.
Collapse
|
25
|
Abstract
Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid and in some cases are surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assemble within their host cells and in vitro. We describe the thermodynamics and kinetics for the assembly of protein subunits into icosahedral capsid shells and how these are modified in cases in which the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques used to characterize capsid assembly, and we highlight aspects of virus assembly that are likely to receive significant attention in the near future.
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454;
| | | |
Collapse
|
26
|
Affiliation(s)
- Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| | - Robert L. Jack
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom;
| |
Collapse
|
27
|
Boettcher MA, Klein HCR, Schwarz US. Role of dynamic capsomere supply for viral capsid self-assembly. Phys Biol 2015; 12:016014. [DOI: 10.1088/1478-3975/12/1/016014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Zhang L, Lua LHL, Middelberg APJ, Sun Y, Connors NK. Biomolecular engineering of virus-like particles aided by computational chemistry methods. Chem Soc Rev 2015; 44:8608-18. [DOI: 10.1039/c5cs00526d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multi-scale investigation of VLP self-assembly aided by computational methods is facilitating the design, redesign, and modification of functionalized VLPs.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, People's Republic of China
| | - Linda H. L. Lua
- Protein Expression Facility
- The University of Queensland
- Brisbane, Australia
| | - Anton P. J. Middelberg
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, People's Republic of China
| | - Natalie K. Connors
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|
29
|
Rapaport DC. Molecular dynamics simulation: a tool for exploration and discovery using simple models. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:503104. [PMID: 25420008 DOI: 10.1088/0953-8984/26/50/503104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Emergent phenomena share the fascinating property of not being obvious consequences of the design of the system in which they appear. This characteristic is no less relevant when attempting to simulate such phenomena, given that the outcome is not always a foregone conclusion. The present survey focuses on several simple model systems that exhibit surprisingly rich emergent behavior, all studied by molecular dynamics (MD) simulation.The examples are taken from the disparate fields of fluid dynamics, granular matter and supramolecular self-assembly. In studies of fluids modeled at the detailed microscopic level using discrete particles, the simulations demonstrate that complex hydrodynamic phenomena in rotating and convecting fluids—the Taylor–Couette and Rayleigh–Bénard instabilities—cannot only be observed within the limited length and time scales accessible to MD, but even allow quantitative agreement to be achieved. Simulation of highly counter-intuitive segregation phenomena in granular mixtures, again using MD methods, but now augmented by forces producing damping and friction, leads to results that resemble experimentally observed axial and radial segregation in the case of a rotating cylinder and to a novel form of horizontal segregation in a vertically vibrated layer. Finally, when modeling self-assembly processes analogous to the formation of the polyhedral shells that package spherical viruses, simulation of suitably shaped particles reveals the ability to produce complete, error-free assembly and leads to the important general observation that reversible growth steps contribute to the high yield. While there are limitations to the MD approach, both computational and conceptual, the results offer a tantalizing hint of the kinds of phenomena that can be explored and what might be discovered when sufficient resources are brought to bear on a problem.
Collapse
|
30
|
Zhdanov VP. Viral capsids: kinetics of assembly under transient conditions and kinetics of disassembly. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042721. [PMID: 25375537 DOI: 10.1103/physreve.90.042721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 06/04/2023]
Abstract
The available kinetic models of assembly of viral protein capsids are focused primarily on the situations in vitro where the amount of protein is fixed. In vivo, however, the viral protein synthesis and capsid assembly occur under transient conditions in parallel with viral genome replication. Herein, a kinetic model describing the latter case of capsid assembly is proposed with emphasis on the period corresponding to the initial stage of viral genome replication. The analysis is aimed at small icosahedral capsids. With biologically reasonable values of model parameters, the model predicts rapid exponential growth of the populations of monomers and fully assembled capsids during the transient period of genome replication. Under the subsequent steady-state conditions with respect to replication, the monomer population is predicted to be nearly constant while the number of fully assembled capsids increases linearly. The kinetics of capsid disassembly, described briefly as well under conditions of negligible monomer concentration, exhibit a short induction period when the number of proteins in a capsid is only slightly smaller than in the beginning, followed by more rapid protein detachment. According to calculations, the latter kinetics may strongly depend on protein degradation.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
31
|
Smith GR, Xie L, Lee B, Schwartz R. Applying molecular crowding models to simulations of virus capsid assembly in vitro. Biophys J 2014; 106:310-20. [PMID: 24411263 DOI: 10.1016/j.bpj.2013.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/03/2013] [Accepted: 11/11/2013] [Indexed: 11/29/2022] Open
Abstract
Virus capsid assembly has been widely studied as a biophysical system, both for its biological and medical significance and as an important model for complex self-assembly processes. No current technology can monitor assembly in detail and what information we have on assembly kinetics comes exclusively from in vitro studies. There are many differences between the intracellular environment and that of an in vitro assembly assay, however, that might be expected to alter assembly pathways. Here, we explore one specific feature characteristic of the intracellular environment and known to have large effects on macromolecular assembly processes: molecular crowding. We combine prior particle simulation methods for estimating crowding effects with coarse-grained stochastic models of capsid assembly, using the crowding models to adjust kinetics of capsid simulations to examine possible effects of crowding on assembly pathways. Simulations suggest a striking difference depending on whether or not a system uses nucleation-limited assembly, with crowding tending to promote off-pathway growth in a nonnucleation-limited model but often enhancing assembly efficiency at high crowding levels even while impeding it at lower crowding levels in a nucleation-limited model. These models may help us understand how complicated assembly systems may have evolved to function with high efficiency and fidelity in the densely crowded environment of the cell.
Collapse
Affiliation(s)
- Gregory R Smith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Lu Xie
- Joint Carnegie Mellon/University of Pittsburgh Ph.D. Program in Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania; Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Byoungkoo Lee
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia
| | - Russell Schwartz
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
32
|
Perkett MR, Hagan MF. Using Markov state models to study self-assembly. J Chem Phys 2014; 140:214101. [PMID: 24907984 PMCID: PMC4048447 DOI: 10.1063/1.4878494] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/30/2014] [Indexed: 11/14/2022] Open
Abstract
Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude.
Collapse
Affiliation(s)
- Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| |
Collapse
|
33
|
Klein HCR, Schwarz US. Studying protein assembly with reversible Brownian dynamics of patchy particles. J Chem Phys 2014; 140:184112. [DOI: 10.1063/1.4873708] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
34
|
May ER. Recent Developments in Molecular Simulation Approaches to Study Spherical Virus Capsids. MOLECULAR SIMULATION 2014; 40:878-888. [PMID: 25197162 DOI: 10.1080/08927022.2014.907899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Viruses are a particularly challenging systems to study via molecular simulation methods. Virus capsids typically consist of over 100 subunit proteins and reach dimensions of over 100 nm; solvated viruses capsid systems can be over 1 million atoms in size. In this review, I will present recent developments which have attempted to overcome the significant computational expense to perform simulations which can inform experimental studies, make useful predictions about biological phenomena and calculate material properties relevant to nanotechnology design efforts.
Collapse
Affiliation(s)
- Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA 06269
| |
Collapse
|
35
|
Zhang R, Linse P. Icosahedral capsid formation by capsomers and short polyions. J Chem Phys 2013; 138:154901. [PMID: 23614442 DOI: 10.1063/1.4799243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Kinetical and structural aspects of the capsomer-polyion co-assembly into icosahedral viruses have been simulated by molecular dynamics using a coarse-grained model comprising cationic capsomers and short anionic polyions. Conditions were found at which the presence of polyions of a minimum length was necessary for capsomer formation. The largest yield of correctly formed capsids was obtained at which the driving force for capsid formation was relatively weak. Relatively stronger driving forces, i.e., stronger capsomer-capsomer short-range attraction and∕or stronger electrostatic interaction, lead to larger fraction of kinetically trapped structures and aberrant capsids. The intermediate formation was investigated and different evolving scenarios were found by just varying the polyion length.
Collapse
Affiliation(s)
- Ran Zhang
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | |
Collapse
|
36
|
|