1
|
Analytical Decomposition of Transition Flux to Cycle Durations via Integration of Transition Times. Symmetry (Basel) 2022. [DOI: 10.3390/sym14091857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rigorous methods of decomposing kinetic networks to cycles are available, but the solutions usually contain entangled transition rates, which are difficult to analyze. This study proposes a new method of decomposing net transition flux to cycle durations, and the duration of each cycle is an integration of the transition times along the cycle. The method provides a series of neat dependences from the basic kinetic variables to the final flux, which support direct analysis based on the formulas. An assisting transformation diagram from symmetric conductivity to asymmetric conductivity is provided, which largely simplifies the application of the method. The method is likely a useful analytical tool for many studies relevant to kinetics and networks. Applications of the method shall provide new kinetic and thermodynamic information for the studied system.
Collapse
|
2
|
Liu XR, Hu X, Loh IY, Wang Z. A high-fidelity light-powered nanomotor from a chemically fueled counterpart via site-specific optomechanical fuel control. NANOSCALE 2022; 14:5899-5914. [PMID: 35373800 DOI: 10.1039/d1nr07964f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optically powered nanomotors are advantageous for clean nanotechnology over chemically fuelled nanomotors. The two motor types are further bounded by different physical principles. Despite the gap, we show here that an optically powered DNA bipedal nanomotor is readily created from a high-performing chemically fuelled counterpart by subjecting its fuel to cyclic site-specific optomechanical control - as if the fuel is optically recharged. Optimizing azobenzene-based control of the original nucleotide fuel selects a light-responsive fuel analog that replicates the different binding affinity of the fuel and reaction products. The resultant motor largely retains high-performing features of the original chemical motor, and achieves the highest directional fidelity among reported light-driven DNA nanomotors. This study thus demonstrates a novel strategy for transforming chemical nanomotors to optical ones for clean nanotechnology. The strategy is potentially applicable to many chemical nanomotors with oligomeric fuels like nucleotides, peptides and synthetic polymers, leading to a new class of light-powered nanomotors that are akin to chemical nanomotors and benefit from their generally high efficiency mechanistically. The motor from this study also provides a rare model system for studying the subtle boundary between chemical and optical nanomotors - a topic pertinent to chemomechanical and optomechanical energy conversion at the single-molecule level.
Collapse
Affiliation(s)
- Xiao Rui Liu
- Department of Physics, National University of Singapore, Singapore 117542
| | - Xinpeng Hu
- Department of Physics, National University of Singapore, Singapore 117542
| | - Iong Ying Loh
- Department of Physics, National University of Singapore, Singapore 117542
| | - Zhisong Wang
- Department of Physics, National University of Singapore, Singapore 117542
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117542.
| |
Collapse
|
3
|
The Mechanistic Integration and Thermodynamic Optimality of a Nanomotor. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The performance of artificial nanomotors is still far behind nature-made biomolecular motors. A mechanistic disparity between the two categories exists: artificial motors often rely on a single mechanism to rectify directional motion, but biomotors integrate multiple mechanisms for better performance. This study proposes a design for a motor-track system and shows that by introducing asymmetric compound foot-track interactions, both selective foot detachment and biased foot-track binding arise from the mechanics of the system. The two mechanisms are naturally integrated to promote the motility of the motor towards being unidirectional, while each mechanism alone only achieves 50% directional fidelity at most. Based on a reported theory, the optimization of the motor is conducted via maximizing the directional fidelity. Along the optimization, the directional fidelity of the motor is raised by parameters that concentrate more energy on driving selective-foot detachment and biased binding, which in turn promotes work production due to the two energies converting to work via a load attached. However, the speed of the motor can drop significantly after the optimization because of energetic competition between speed and directional fidelity, which causes a speed-directional fidelity tradeoff. As a case study, these results test thermodynamic correlation between the performances of a motor and suggest that directional fidelity is an important quantity for motor optimization.
Collapse
|
4
|
Hou R, Wang Z. Thermodynamic marking of F OF 1 ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148369. [PMID: 33454313 DOI: 10.1016/j.bbabio.2021.148369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/02/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
FOF1 ATP synthase is a ~100% efficient molecular machine for energy conversion in biology, and holds great lessons for man-made energy technology and nanotechnology. In light of formidable biocomplexity of the FOF1 machinery, its modeling from pure physical principles remains difficult and rare. Here we construct a thermodynamic model of FOF1 from experimentally accessible quantities plus a single entropy production that generally has vanishingly small values (<1kB). Based on the physical inputs, this model captures FOF1 performance observed over an exhaustively wide range of proton-motive force and nucleotide concentrations. The model predicts a distinct 1/8kBT slope for ATP synthesis rate versus proton-motive force, which is verified by experimental data and represents a profound thermodynamic marking of this amazingly efficient machine operating near a universal limit of the 2nd law of thermodynamics. The model further predicts two symmetries of heat productions, which are testable by available experimental techniques and offer quantitative constraints on FOF1's possible mechanisms behind its ~100% efficiency.
Collapse
Affiliation(s)
- Ruizheng Hou
- Department of Applied Physics, School of Science, Xi'an University of Technology, Xi'an, Shaan Xi 710048, China.
| | - Zhisong Wang
- Department of Physics and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
5
|
Wang Z, Hou R, Loh IY. Track-walking molecular motors: a new generation beyond bridge-burning designs. NANOSCALE 2019; 11:9240-9263. [PMID: 31062798 DOI: 10.1039/c9nr00033j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Track-walking molecular motors are the core bottom-up mechanism for nanometre-resolved translational movements - a fundamental technological capability at the root of numerous applications ranging from nanoscale assembly lines and chemical synthesis to molecular robots and shape-changing materials. Over the last 10 years, artificial molecular walkers (or nanowalkers) have evolved from the 1st generation of bridge-burning designs to the 2nd generation capable of truly sustainable movements. Invention of non-bridge-burning nanowalkers was slow at first, but has picked up speed since 2012, and is now close to breaking major barriers for wide-spread development. Here we review the 2nd generation of artificial nanowalkers, which are mostly made of DNA molecules and draw energy from light illumination or from chemical fuels for entirely autonomous operation. They are typically symmetric dimeric motors walking on entirely periodic tracks, yet the motors possess an inherent direction for large-scale amplification of the action of many motor copies. These translational motors encompass the function of rotational molecular motors on circular or linear tracks, and may involve molecular shuttles as 'engine' motifs. Some rules of thumb are provided to help readers design similar motors from DNA or other molecular building blocks. Opportunities and challenges for future development are discussed, especially in the areas of molecular robotics and active materials based on the advanced motors.
Collapse
Affiliation(s)
- Zhisong Wang
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | | | | |
Collapse
|
6
|
Wang Z. Generic maps of optimality reveal two chemomechanical coupling regimes for motor proteins: from F 1-ATPase and kinesin to myosin and cytoplasmic dynein. Integr Biol (Camb) 2019; 10:34-47. [PMID: 29296987 DOI: 10.1039/c7ib00142h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many motor proteins achieve high efficiency for chemomechanical conversion, and single-molecule force-resisting experiments are a major tool to detect the chemomechanical coupling of efficient motors. Here, we introduce several quantitative relations that involve only parameters extracted from force-resisting experiments and offer new benchmarks beyond mere efficiency to judge the chemomechanical optimality or deficit of evolutionary remote motors on the same footing. The relations are verified by the experimental data from F1-ATPase, kinesin-1, myosin V and cytoplasmic dynein, which are representative members of four motor protein families. A double-fitting procedure yields the chemomechanical parameters that can be cross-checked for consistency. Using the extracted parameters, two generic maps of chemomechanical optimality are constructed on which motors across families can be quantitatively compared. The maps reveal two chemomechanical coupling regimes, one conducive to high efficiency and high directionality, and the other advantageous to force generation. Surprisingly, an F1 rotor and a kinesin-1 walker belong to the first regime despite their obvious evolutionary gap, while myosin V and cytoplasmic dynein follow the second regime. This analysis also predicts the symmetries of directional biases and heat productions for the motors, which impose constraints on their chemomechanical coupling and are open to future experimental tests. The verified relations, six in total, present a unified fitting framework to analyze force-resisting experiments. The generic maps of optimality, to which many more motors can be added in future, provide a rigorous method for a systematic cross-family comparison of motors to expose their evolutionary connections and mechanistic similarities.
Collapse
Affiliation(s)
- Zhisong Wang
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| |
Collapse
|
7
|
Liu M, Cheng J, Tee SR, Sreelatha S, Loh IY, Wang Z. Biomimetic Autonomous Enzymatic Nanowalker of High Fuel Efficiency. ACS NANO 2016; 10:5882-5890. [PMID: 27294366 DOI: 10.1021/acsnano.6b01035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Replicating efficient chemical energy utilization of biological nanomotors is one ultimate goal of nanotechnology and energy technology. Here, we report a rationally designed autonomous bipedal nanowalker made of DNA that achieves a fuel efficiency of less than two fuel molecules decomposed per productive forward step, hence breaking a general threshold for chemically powered machines invented to date. As a genuine enzymatic nanomotor without changing itself nor the track, the walker demonstrates a sustained motion on an extended double-stranded track at a speed comparable to previous burn-bridge motors. Like its biological counterparts, this artificial nanowalker realizes multiple chemomechanical gatings, especially a bias-generating product control unique to chemically powered nanomotors. This study yields rich insights into how pure physical effects facilitate harvest of chemical energy at the single-molecule level and provides a rarely available motor system for future development toward replicating the efficient, repeatable, automatic, and mechanistically sophisticated transportation seen in biomotor-based intracellular transport but beyond the capacity of the current burn-bridge motors.
Collapse
Affiliation(s)
- Meihan Liu
- Department of Physics and ‡NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore 117542
| | - Juan Cheng
- Department of Physics and ‡NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore 117542
| | - Shern Ren Tee
- Department of Physics and ‡NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore 117542
| | - Sarangapani Sreelatha
- Department of Physics and ‡NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore 117542
| | - Iong Ying Loh
- Department of Physics and ‡NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore 117542
| | - Zhisong Wang
- Department of Physics and ‡NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore 117542
| |
Collapse
|
8
|
Loh IY, Cheng J, Tee SR, Efremov A, Wang Z. From bistate molecular switches to self-directed track-walking nanomotors. ACS NANO 2014; 8:10293-10304. [PMID: 25268955 DOI: 10.1021/nn5034983] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Track-walking nanomotors and larger systems integrating these motors are important for wide real-world applications of nanotechnology. However, inventing these nanomotors remains difficult, a sharp contrast to the widespread success of simpler switch-like nanodevices, even though the latter already encompasses basic elements of the former such as engine-like bistate contraction/extension or leg-like controllable binding. This conspicuous gap reflects an impeding bottleneck for the nanomotor development, namely, lack of a modularized construction by which spatially and functionally separable "engines" and "legs" are flexibly assembled into a self-directed motor. Indeed, all track-walking nanomotors reported to date combine the engine and leg functions in the same molecular part, which largely underpins the device-motor gap. Here we propose a general design principle allowing the modularized nanomotor construction from disentangled engine-like and leg-like motifs, and provide an experimental proof of concept by implementing a bipedal DNA nanomotor up to a best working regime of this versatile design principle. The motor uses a light-powered contraction-extension switch to drive a coordinated hand-over-hand directional walking on a DNA track. Systematic fluorescence experiments confirm the motor's directional motion and suggest that the motor possesses two directional biases, one for rear leg dissociation and one for forward leg binding. This study opens a viable route to develop track-walking nanomotors from numerous molecular switches and binding motifs available from nanodevice research and biology.
Collapse
Affiliation(s)
- Iong Ying Loh
- Department of Physics, ‡NUS Graduate School for Integrative Sciences and Engineering, §Center for Computational Science and Engineering, National University of Singapore , Singapore 117542
| | | | | | | | | |
Collapse
|
9
|
Cheng J, Sreelatha S, Loh IY, Liu M, Wang Z. A bioinspired design principle for DNA nanomotors: Mechanics-mediated symmetry breaking and experimental demonstration. Methods 2014; 67:227-33. [DOI: 10.1016/j.ymeth.2014.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 02/10/2014] [Accepted: 02/21/2014] [Indexed: 11/27/2022] Open
|
10
|
Liu M, Hou R, Cheng J, Loh IY, Sreelatha S, Tey JN, Wei J, Wang Z. Autonomous synergic control of nanomotors. ACS NANO 2014; 8:1792-1803. [PMID: 24422493 DOI: 10.1021/nn406187u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Control is a hallmark of machines; effective control over a nanoscale system is necessary to turn it into a nanomachine. Nanomotors from biology often integrate a ratchet-like passive control and a power-stroke-like active control, and this synergic active-plus-passive control is critical to efficient utilization of energy. It remains a challenge to integrate the two differing types of control in rationally designed nanomotor systems. Recently a light-powered track-walking DNA nanomotor was developed from a bioinspired design principle that has the potential to integrate both controls. However, it is difficult to separate experimental signals for either control due to a tight coupling of both controls. Here we present a systematic study of the motor and new derivatives using different fluorescence labeling schemes and light operations. The experimental data suggest that the motor achieves the two controls autonomously through a mechanics-mediated symmetry breaking. This study presents an experimental validation for the bioinspired design principle of mechanical breaking of symmetry for synergic ratchet-plus-power stroke control. Augmented by mechanical and kinetic modeling, this experimental study provides mechanistic insights that may help advance molecular control in future nanotechnological systems.
Collapse
Affiliation(s)
- Meihan Liu
- Department of Physics, ‡NUS Graduate School for Integrative Sciences and Engineering, and §Center for Computational Science and Engineering, National University of Singapore , Singapore 117542
| | | | | | | | | | | | | | | |
Collapse
|