Dandogbessi BS, Kenfack A. Absolute negative mobility induced by potential phase modulation.
PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015;
92:062903. [PMID:
26764770 DOI:
10.1103/physreve.92.062903]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 06/05/2023]
Abstract
We investigate the transport properties of a particle subjected to a deterministic inertial rocking system, under a constant bias, for which the phase of the symmetric spatial potential used is time modulated. We show that this modulated phase, assisted by a periodic driving force, can lead to the occurrence of the so-called absolute negative mobility (ANM), the phenomenon in which the particle surprisingly moves against the bias. Furthermore, we discover that ANM predominantly originates from chaotic-periodic transitions. While a detailed mechanism of ANM remains unclear, we show that one can manipulate the control parameters, i.e., the amplitude and the frequency of the phase, in order to enforce the motion of the particle in a given direction. Finally, for this experimentally realizable system, we devise a two-parameter current plot which may be a good guide for controlling ANM.
Collapse