1
|
Harischandra PAD, Välisalmi T, Cenev ZM, Linder MB, Zhou Q. Shaping Liquid Droplets on an Active Air-Ferrofluid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37224278 DOI: 10.1021/acs.langmuir.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An air-liquid interface is important in many biological and industrial applications, where the manipulation of liquids on the air-liquid interface can have a significant impact. However, current manipulation techniques on the interface are mostly limited to transportation and trapping. Here, we report a magnetic liquid shaping method that can squeeze, rotate, and shape nonmagnetic liquids on an air-ferrofluid interface with programmable deformation. We can control the aspect ratio of the ellipse and generate repeatable quasi-static shapes of a hexadecane oil droplet. We can rotate droplets and stir liquids into spiral-like structures. We can also shape phase-changing liquids and fabricate shape-programmed thin films at the air-ferrofluid interface. The proposed method may potentially open up new possibilities for film fabrication, tissue engineering, and biological experiments that can be carried out at an air-liquid interface.
Collapse
Affiliation(s)
- P A Diluka Harischandra
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
| | - Teemu Välisalmi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland
| | - Zoran M Cenev
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland
| | - Quan Zhou
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
2
|
Zhao X, Tan S, Zhang C, Yao Y, Liu J. Spinning Liquid Metal Droplets on Ice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300158. [PMID: 37026682 DOI: 10.1002/smll.202300158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Indexed: 06/19/2023]
Abstract
The non-contact and non-wetting droplet motion isolated from the solid surface has a high degree of freedom and thus can exhibit many peculiar interfacial phenomena. Here, an experimental phenomenon of spinning liquid metal droplets on an ice block is discovered, which adopts the dual solid-liquid phase transition of the liquid metal and the ice. The whole system is somewhat a variant of the classic Leidenfrost effect, which directly uses the latent heat released by the spontaneous solidification of the liquid metal droplet as a heat source to melt the ice and create an intervening lubricant water film. Interestingly, it is found that the droplets on ice become very mobile and undergo rapid spin as the solidification process proceeds. A series of comparative experiments clarify that the circumferential driving force comes from the escaping bubbles as the ice melts. Furthermore, by comparing the motion characteristics of different kinds of liquid metal droplets and solid balls on ice and investigating their physical properties and heat transfer, it is disclosed that the spin effect can be universal for objects of different materials, as long as the two necessary elements of rapid liquid film establishment and gas bubble release can be satisfied simultaneously.
Collapse
Affiliation(s)
- Xi Zhao
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sicong Tan
- Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenglin Zhang
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuchen Yao
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Boniface D, Sebilleau J, Magnaudet J, Pimienta V. Spontaneous spinning of a dichloromethane drop on an aqueous surfactant solution. J Colloid Interface Sci 2022; 625:990-1001. [DOI: 10.1016/j.jcis.2022.05.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
|
4
|
Wang X, Mori Y, Tsuchiya K. Periodicity in ultrasonic atomization involving beads-fountain oscillations and mist generation: Effects of driving frequency. ULTRASONICS SONOCHEMISTRY 2022; 86:105997. [PMID: 35417794 PMCID: PMC9018148 DOI: 10.1016/j.ultsonch.2022.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Ultrasonic atomization induced by high driving frequency, generally on the order of 1 MHz or higher, could involve a liquid fountain in the form of a corrugated jet, or a chain of "beads" of submillimeter diameter in contact. This study concerns dynamics/instability of such beads fountain, observed under lower input power density (≤ 6 W/cm2) of the "flat" ultrasound transducer with a "regulating" nozzle equipped, exhibiting time-varying characteristics with certain periodicity. High-speed, high-resolution images are processed for quantitative elucidation: frequency analysis (fast Fourier transform) and time-frequency analysis (discrete wavelet transform) are employed, respectively, to evaluate dominant frequencies of beads-surface oscillations and to reveal factor(s) triggering mist emergence. The resulting time variation in the measured (or apparent) fountain structure, associated with the recurring-beads size scalable to the ultrasound wavelength, subsumes periodic nature predictable from simple physical modeling as well as principle. It is further found that such dynamics in (time-series data for) the fountain structure at given height(s) along a series of beads would signal "bursting" of liquid droplets emanating out of a highly deformed bead often followed by a cloud of tiny droplets, or mist. In particular, the bursting appears to be not a completely random phenomenon but should concur with the fountain periodicity with a limited extent of probability.
Collapse
Affiliation(s)
- Xiaolu Wang
- Dept. of Chemical Engineering and Materials Science, Doshisha Univ., Kyotanabe, Kyoto 610-0321, Japan
| | - Yasushige Mori
- Dept. of Chemical Engineering and Materials Science, Doshisha Univ., Kyotanabe, Kyoto 610-0321, Japan
| | - Katsumi Tsuchiya
- Dept. of Chemical Engineering and Materials Science, Doshisha Univ., Kyotanabe, Kyoto 610-0321, Japan.
| |
Collapse
|
5
|
Singla T, Roy T, Parmananda P, Rivera M. An alternate approach to simulate the dynamics of perturbed liquid drops. CHAOS (WOODBURY, N.Y.) 2022; 32:023106. [PMID: 35232026 DOI: 10.1063/5.0071930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Liquid drops when subjected to external periodic perturbations can execute polygonal oscillations. In this work, a simple model is presented that demonstrates these oscillations and their characteristic properties. The model consists of a spring-mass network such that masses are analogous to liquid molecules and the springs correspond to intermolecular links. Neo-Hookean springs are considered to represent these intermolecular links. The restoring force of a neo-Hookean spring depends nonlinearly on its length such that the force of a compressed spring is much higher than the force of the spring elongated by the same amount. This is analogous to the incompressibility of liquids, making these springs suitable to simulate the polygonal oscillations. It is shown that this spring-mass network can imitate most of the characteristic features of experimentally reported polygonal oscillations. Additionally, it is shown that the network can execute certain dynamics, which so far have not been observed in a perturbed liquid drop. The characteristics of dynamics that are observed in the perturbed network are polygonal oscillations, rotation of network, numerical relations (rational and irrational) between the frequencies of polygonal oscillations and the forcing signal, and that the shape of the polygons depends on the parameters of perturbation.
Collapse
Affiliation(s)
- Tanu Singla
- Tecnologico de Monterrey, Calle del Puente 222, Colonia Ejidos de Huipulco, Tlalpan, CP 14380 Ciudad de México, Mexico
| | - Tanushree Roy
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - P Parmananda
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - M Rivera
- Centro de Investigación en Ciencias-(IICBA), UAEM, Avenida Universidad 1001, Colonia Chamilpa, CP 62209 Cuernavaca, Morelos, Mexico
| |
Collapse
|
6
|
Self-excitation of Leidenfrost drops and consequences on their stability. Proc Natl Acad Sci U S A 2021; 118:2021691118. [PMID: 34155101 DOI: 10.1073/pnas.2021691118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Volatile liquids (water, alcohol, etc.) poured on hot solids levitate above a layer of vapor. Unexpectedly, these so-called Leidenfrost drops often suddenly start to oscillate with star shapes, a phenomenon first reported about 140 y ago. Similar shapes are known to be triggered when a liquid is subjected to an external periodic forcing, but the unforced Leidenfrost case remains unsolved. We show that the levitating drops are excited by an intrinsic periodic forcing arising from a vibration of the vapor cushion. We discuss the frequency of the vibrations and how they can excite surface standing waves possibly amplified under geometric conditions of resonance-an ensemble of observations that provide a plausible scenario for the origin, mode selection, and sporadic nature of the Leidenfrost stars.
Collapse
|
7
|
van Limbeek MAJ, Ramírez-Soto O, Prosperetti A, Lohse D. How ambient conditions affect the Leidenfrost temperature. SOFT MATTER 2021; 17:3207-3215. [PMID: 33623939 DOI: 10.1039/d0sm01570a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
By sufficiently heating a solid, a sessile drop can be prevented from contacting the surface by floating on its own vapour. While certain aspects of the dynamics of this so-called Leidenfrost effect are understood, it is still unclear why a minimum temperature (the Leidenfrost temperature TL) is required before the effect manifests itself, what properties affect this temperature, and what physical principles govern it. Here we investigate the dependence of the Leidenfrost temperature on the ambient conditions: first, by increasing (decreasing) the ambient pressure, we find an increase (decrease) in TL. We propose a rescaling of the temperature which allows us to collapse the curves for various organic liquids and water onto a single master curve, which yields a powerful tool to predict TL. Secondly, increasing the ambient temperature stabilizes meta-stable, levitating drops at increasingly lower temperatures below TL. This observation reveals the importance of thermal Marangoni flow in describing the Leidenfrost effect accurately. Our results shed new light on the mechanisms playing a role in the Leidenfrost effect and may help to eventually predict the Leidenfrost temperature and achieve complete understanding of the phenomenon, however, many questions still remain open.
Collapse
Affiliation(s)
- Michiel A J van Limbeek
- University of Twente, Physics of Fluids, Drienerlolaan 5, P. O. Box 217, 7500AE Enschede, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Yi P, Thurgood P, Nguyen N, Abdelwahab H, Petersen P, Gilliam C, Ghorbani K, Pirogova E, Tang SY, Khoshmanesh K. Oscillation and self-propulsion of Leidenfrost droplets enclosed in cylindrical cavities. SOFT MATTER 2020; 16:8854-8860. [PMID: 33026037 DOI: 10.1039/d0sm01153c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Leidenfrost droplets can be considered as soft engines capable of directly transforming heat into mechanical energy. Despite remarkable advancements in understanding the propulsion of Leidenfrost droplets on asymmetric structures, the complex dynamics of droplets in enclosed structures is not fully understood. To address this fundamental gap, we investigated the dynamics of Leidenfrost droplets restricted by metal disks. The disk alters the accumulation and release of the vapour generated by the droplet, and substantially changes its dynamic characteristics. Our experiments reveal the formation of oscillating multi-lobed structures when restricting the droplet within a disk. In comparison, patterning offset radial grooves on the surface of the disk rectifies the vapour flow and facilitates the self-propulsion of the droplet along the edge of the disk. Our work offers opportunities for developing soft and short-living actuators, which can operate at high temperatures.
Collapse
Affiliation(s)
- Pyshar Yi
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Ngan Nguyen
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Haneen Abdelwahab
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Phred Petersen
- School of Media and Communication, RMIT University, Melbourne, Victoria 3000, Australia
| | - Christopher Gilliam
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Kamran Ghorbani
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
9
|
Zhou D, Zhang Y, Hou Y, Zhong X, Jin J, Sun L. Film levitation and central jet of droplet impact on nanotube surface at superheated conditions. Phys Rev E 2020; 102:043108. [PMID: 33212652 DOI: 10.1103/physreve.102.043108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Influences of surface nanotubes at high temperatures are investigated on droplet impact dynamics and Leidenfrost effect. Five distinct regimes of impact droplets are found on the nanotube surface, including contact boiling, film levitation, central jet levitation, central jet, and Leidenfrost phenomenon. The regimes of film levitation, central jet levitation, and central jet are characterized by either film levitation and/or liquid central jet. The regime of Leidenfrost phenomenon is characterized by droplet bounce-off behavior free of any liquid jets. Film levitation is driven by the vaporization of two parts of the droplet, with one as the droplet bottom layer over the contact area above the nanotube structure, and the other as the hemiwicking liquid in nanotubes. Both the vaporization is impaired by increasing the surface temperature, which is attributed to the reduced contact time and less extent of spread of the droplet at a higher surface temperature. The central jet phenomenon is driven by the vapor stream produced by hemiwicking liquid in the central area upon impact. It is enhanced and then suppressed by elevating the surface temperature, resulting from the collective effects of the vapor pressure in nanotubes which increases with the surface temperature, and the cross-sectional area of the vapor stream, which increases and then decreases with the surface temperature. At a high Weber number, the Leidenfrost temperature can be increased by 125^{∘}C on the nanotube surface, implying a great potential in heat transfer enhancement for droplet-based applications.
Collapse
Affiliation(s)
- Dongdong Zhou
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, China
| | | | | | | | - Jian Jin
- State Key Laboratory of Mechanical Transmission, School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Lidong Sun
- State Key Laboratory of Mechanical Transmission, School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
10
|
Maksymov IS, Pototsky A. Harmonic and subharmonic waves on the surface of a vibrated liquid drop. Phys Rev E 2019; 100:053106. [PMID: 31869993 DOI: 10.1103/physreve.100.053106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 11/07/2022]
Abstract
Liquid drops and vibrations are ubiquitous in both everyday life and technology, and their combination can often result in fascinating physical phenomena opening up intriguing opportunities for practical applications in biology, medicine, chemistry, and photonics. Here we study, theoretically and experimentally, the response of pancake-shaped liquid drops supported by a solid plate that vertically vibrates at a single, low acoustic range frequency. When the vibration amplitudes are small, the primary response of the drop is harmonic at the frequency of the vibration. However, as the amplitude increases, the half-frequency subharmonic Faraday waves are excited parametrically on the drop surface. We develop a simple hydrodynamic model of a one-dimensional liquid drop to analytically determine the amplitudes of the harmonic and the first superharmonic components of the linear response of the drop. In the nonlinear regime, our numerical analysis reveals an intriguing cascade of instabilities leading to the onset of subharmonic Faraday waves, their modulation instability, and chaotic regimes with broadband power spectra. We show that the nonlinear response is highly sensitive to the ratio of the drop size and Faraday wavelength. The primary bifurcation of the harmonic waves is shown to be dominated by a period-doubling bifurcation, when the drop height is comparable with the width of the viscous boundary layer. Experimental results conducted using low-viscosity ethanol and high-viscocity canola oil drops vibrated at 70Hz are in qualitative agreement with the predictions of our modeling.
Collapse
Affiliation(s)
- Ivan S Maksymov
- Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Andrey Pototsky
- Department of Mathematics, Faculty of Science Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
11
|
Shahriari A, Wilson PS, Bahadur V. Acoustic detection of electrostatic suppression of the Leidenfrost state. Phys Rev E 2018; 98:013103. [PMID: 30110754 DOI: 10.1103/physreve.98.013103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Indexed: 11/07/2022]
Abstract
At high temperatures, a droplet can rest on a cushion of its vapor (the Leidenfrost effect). Application of an electric field across the vapor gap fundamentally eliminates the Leidenfrost state by attracting liquid towards the surface. This study uses acoustic signature tracking to study electrostatic suppression of the Leidenfrost state on solid and liquid surfaces. It is seen that the liquid-vapor instabilities that characterize suppression on solid surfaces can be detected acoustically. This can be the basis for objective measurements of the threshold voltage and frequency required for suppression. Acoustic analysis provides additional physical insights that would be challenging to obtain with other measurements. On liquid surfaces, the absence of an acoustic signal indicates a different suppression mechanism (instead of instabilities). Acoustic signature tracking can also detect various boiling patterns associated with electrostatically assisted quenching. Overall, this work highlights the benefits of acoustics as a tool to better understand electrostatic suppression of the Leidenfrost state, and the resulting heat transfer enhancement.
Collapse
Affiliation(s)
- Arjang Shahriari
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Preston S Wilson
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Vaibhav Bahadur
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
12
|
Vourdas N, Pashos G, Kokkoris G, Boudouvis AG, Stathopoulos VN. Droplet Mobility Manipulation on Porous Media Using Backpressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5250-5258. [PMID: 27163363 DOI: 10.1021/acs.langmuir.6b00900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Wetting phenomena on hydrophobic surfaces are strongly related to the volume and pressure of gas pockets residing at the solid-liquid interface. In this study, we explore the underlying mechanisms of droplet actuation and mobility manipulation when backpressure is applied through a porous medium under a sessile pinned droplet. Reversible transitions between the initially sticky state and the slippery states are thus incited by modulating the backpressure. The sliding angles of deionized (DI) water and ethanol in DI water droplets of various volumes are presented to quantify the effect of the backpressure on the droplet mobility. For a 50 μL water droplet, the sliding angle decreases from 45 to 0° when the backpressure increases to ca. 0.60 bar. Significantly smaller backpressure levels are required for lower surface energy liquids. We shed light on the droplet actuation and movement mechanisms by means of simulations encompassing the momentum conservation and the continuity equations along with the Cahn-Hilliard phase-field equations in a 2D computational domain. The droplet actuation mechanism entails depinning of the receding contact line and movement by means of forward wave propagation reaching the front of the droplet. Eventually, the droplet skips forward. The contact line depinning is also corroborated by analytical calculations based on the governing vertical force balance, properly modified to incorporate the effect of the backpressure.
Collapse
Affiliation(s)
- N Vourdas
- School of Technological Applications, Technological Educational Institute of Sterea Ellada , Psachna 34400, Evia, Greece
| | - G Pashos
- School of Chemical Engineering, National Technical University of Athens , Zografou Campus, Athens 15780, Greece
| | - G Kokkoris
- School of Chemical Engineering, National Technical University of Athens , Zografou Campus, Athens 15780, Greece
- Institute of Nanoscience & Nanotechnology, NCSR Demokritos , Athens 15341, Greece
| | - A G Boudouvis
- School of Chemical Engineering, National Technical University of Athens , Zografou Campus, Athens 15780, Greece
| | - V N Stathopoulos
- School of Technological Applications, Technological Educational Institute of Sterea Ellada , Psachna 34400, Evia, Greece
| |
Collapse
|
13
|
Lin PC, I L. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding. Phys Rev E 2016; 93:021101. [PMID: 26986279 DOI: 10.1103/physreve.93.021101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Indexed: 11/07/2022]
Abstract
We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.
Collapse
Affiliation(s)
- Po-Cheng Lin
- Department of Physics and Center for Complex Systems, National Central University, Jhongli, Taiwan 32001, Republic of China
| | - Lin I
- Department of Physics and Center for Complex Systems, National Central University, Jhongli, Taiwan 32001, Republic of China
| |
Collapse
|
14
|
Li Q, Kang QJ, Francois MM, Hu AJ. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. SOFT MATTER 2016; 12:302-312. [PMID: 26467921 DOI: 10.1039/c5sm01353d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically investigated using a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The capability of the model for simulating evaporation is validated via the D(2) law. Using the model, we first study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in the direction toward the slowly inclined side from the ratchet peaks, which agrees with the direction of droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet moving velocity. Furthermore, the processes that the Leidenfrost droplets climb uphill on inclined ratchet surfaces are also studied. Numerical results show that the maximum inclination angle at which a Leidenfrost droplet can still climb uphill successfully is affected by the initial radius of the droplet.
Collapse
Affiliation(s)
- Qing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China and Computational Earth Science Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Q J Kang
- Computational Earth Science Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - M M Francois
- Fluid Dynamics and Solid Mechanics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - A J Hu
- School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
15
|
Vourdas N, Ranos C, Stathopoulos VN. Reversible and dynamic transitions between sticky and slippery states on porous surfaces with ultra-low backpressure. RSC Adv 2015. [DOI: 10.1039/c5ra00663e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mobility of a droplet on a surface is strongly correlated to the liquid–solid contact area, as well as the pressure of the gas entrapped between. Reversible sticky to slippery transitions may be attained by ultra-low back pressure on porous surfaces.
Collapse
Affiliation(s)
- N. Vourdas
- School of Technological Applications
- Technological Educational Institute of Sterea Ellada
- Evia
- Greece
| | - C. Ranos
- School of Technological Applications
- Technological Educational Institute of Sterea Ellada
- Evia
- Greece
| | - V. N. Stathopoulos
- School of Technological Applications
- Technological Educational Institute of Sterea Ellada
- Evia
- Greece
| |
Collapse
|
16
|
Borcia R, Borcia ID, Bestehorn M. Can vibrations control drop motion? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14113-14117. [PMID: 25398095 DOI: 10.1021/la503415r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We discuss a mechanism for controlled motion of drops with applications for microfluidics and microgravity. The mechanism is the following: a solid plate supporting a liquid droplet is simultaneously subject to lateral and vertical harmonic oscillations. In this way the symmetry of the back-and-forth droplet movement along the substrate under inertial effects is broken and thus will induce a net driven motion of the drop. We study the dependency of the traveled distance on the oscillation parameters (forcing amplitude, frequency, and phase shift between the two perpendicular oscillations) via phase field simulations. The internal flow structure inside the droplet is also investigated. We make predictions on resonance frequencies for drops on a substrate with a varying wettability.
Collapse
Affiliation(s)
- Rodica Borcia
- Lehrstuhl Statistische Physik/Nichtlineare Dynamik, Brandenburgische Technische Universität , Erich-Weinert-Strasse 1, 03046 Cottbus, Germany
| | | | | |
Collapse
|
17
|
Caswell TA. Dynamics of the vapor layer below a Leidenfrost drop. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:013014. [PMID: 25122376 DOI: 10.1103/physreve.90.013014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 06/03/2023]
Abstract
In the Leidenfrost effect a small drop of fluid is levitated, above a sufficiently hot surface, on a persistent vapor layer generated by evaporation from the drop. The vapor layer thermally insulates the drop from the surface leading to extraordinarily long drop lifetimes. The top-view shape of the levitated drops can exhibit persistent starlike vibrations. I extend recent work [Burton et al., Phys. Rev. Lett. 109, 074301 (2012)] to study the bottom surface of the drop using interference imaging. In this work I use a high-speed camera and automated image analysis to image, locate, and classify the interference fringes. From the interference fringes I reconstruct the shape and height profile of the rim where the drop is closest to the surface. I measure the drop-size dependence of the planar vibrational mode frequencies, which agree well with previous work. I observe a distinct breathing mode in the average radius of the drop, the frequency of which scales differently with drop size than the other modes. This breathing mode can be tightly coupled to a vertical motion of the drop. I further observe a qualitative difference in the structure and dynamics of the vertical profile of the rim between large and small drops.
Collapse
Affiliation(s)
- Thomas A Caswell
- The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|