1
|
Ruan H, Yuan J, Xu Y, He J, Ma Y, Wang J. Performance enhancement of quantum Brayton engine via Bose-Einstein condensation. Phys Rev E 2024; 109:024126. [PMID: 38491606 DOI: 10.1103/physreve.109.024126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Bose-Einstein condensation is a quintessential characteristic of Bose systems. We investigate the finite-time performance of an endoreversible quantum Brayton heat engine operating with an ideal Bose gas with a finite number of particles confined in a d-dimensional harmonic trap. The working medium of these engines may work in the condensation, noncondensation, and near-critical point regimes, respectively. We demonstrate that the existence of the phase transition during the cycle leads to enhanced engine performance by increasing power output and efficiencies corresponding to maximum power and maximum efficient power. We also show that the quantum engine working across the Bose-Einstein condensation in N-particle Bose gas outperforms an ensemble of independent single-particle heat engines. The difference in the machine performance can be explained in terms of the behavior of specific heat at constant pressure near the critical point regime.
Collapse
Affiliation(s)
- Huilin Ruan
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jiehong Yuan
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yang Xu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Erdman PA, Noé F. Model-free optimization of power/efficiency tradeoffs in quantum thermal machines using reinforcement learning. PNAS NEXUS 2023; 2:pgad248. [PMID: 37593201 PMCID: PMC10427747 DOI: 10.1093/pnasnexus/pgad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
A quantum thermal machine is an open quantum system that enables the conversion between heat and work at the micro or nano-scale. Optimally controlling such out-of-equilibrium systems is a crucial yet challenging task with applications to quantum technologies and devices. We introduce a general model-free framework based on reinforcement learning to identify out-of-equilibrium thermodynamic cycles that are Pareto optimal tradeoffs between power and efficiency for quantum heat engines and refrigerators. The method does not require any knowledge of the quantum thermal machine, nor of the system model, nor of the quantum state. Instead, it only observes the heat fluxes, so it is both applicable to simulations and experimental devices. We test our method on a model of an experimentally realistic refrigerator based on a superconducting qubit, and on a heat engine based on a quantum harmonic oscillator. In both cases, we identify the Pareto-front representing optimal power-efficiency tradeoffs, and the corresponding cycles. Such solutions outperform previous proposals made in the literature, such as optimized Otto cycles, reducing quantum friction.
Collapse
Affiliation(s)
- Paolo A Erdman
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
- Microsoft Research AI4Science, Karl-Liebknecht Str. 32, 10178 Berlin, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
3
|
Guéry-Odelin D, Jarzynski C, Plata CA, Prados A, Trizac E. Driving rapidly while remaining in control: classical shortcuts from Hamiltonian to stochastic dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:035902. [PMID: 36535018 DOI: 10.1088/1361-6633/acacad] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Stochastic thermodynamics lays down a broad framework to revisit the venerable concepts of heat, work and entropy production for individual stochastic trajectories of mesoscopic systems. Remarkably, this approach, relying on stochastic equations of motion, introduces time into the description of thermodynamic processes-which opens the way to fine control them. As a result, the field of finite-time thermodynamics of mesoscopic systems has blossomed. In this article, after introducing a few concepts of control for isolated mechanical systems evolving according to deterministic equations of motion, we review the different strategies that have been developed to realize finite-time state-to-state transformations in both over and underdamped regimes, by the proper design of time-dependent control parameters/driving. The systems under study are stochastic, epitomized by a Brownian object immersed in a fluid; they are thus strongly coupled to their environment playing the role of a reservoir. Interestingly, a few of those methods (inverse engineering, counterdiabatic driving, fast-forward) are directly inspired by their counterpart in quantum control. The review also analyzes the control through reservoir engineering. Besides the reachability of a given target state from a known initial state, the question of the optimal path is discussed. Optimality is here defined with respect to a cost function, a subject intimately related to the field of information thermodynamics and the question of speed limit. Another natural extension discussed deals with the connection between arbitrary states or non-equilibrium steady states. This field of control in stochastic thermodynamics enjoys a wealth of applications, ranging from optimal mesoscopic heat engines to population control in biological systems.
Collapse
Affiliation(s)
- David Guéry-Odelin
- Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, Université de Toulouse, CNRS, Toulouse, France
| | - Christopher Jarzynski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States of America
- Department of Physics, University of Maryland, College Park, MD, United States of America
| | - Carlos A Plata
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | | |
Collapse
|
4
|
Zhao XH, Gong ZN, Tu ZC. Low-dissipation engines: Microscopic construction via shortcuts to adiabaticity and isothermality, the optimal relation between power and efficiency. Phys Rev E 2022; 106:064117. [PMID: 36671114 DOI: 10.1103/physreve.106.064117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
We construct a microscopic model of low-dissipation engines by driving a Brownian particle in a time-dependent harmonic potential. Shortcuts to adiabaticity and shortcuts to isothermality are introduced to realize the adiabatic and isothermal branches in a thermodynamic cycle, respectively. We derive an analytical formula of the efficiency at maximum power with explicit expressions of dissipation coefficients under the optimized protocols. When the relative temperature difference between the two baths in the cycle is insignificant, this expression satisfies the universal law of efficiency at maximum power up to the quadratic term of the Carnot efficiency. For large relative temperature differences, the efficiency at maximum power tends to be 1/2. Furthermore, we analyze the issue of power at any given efficiency for general low-dissipation engines and then obtain the supremum of the power in three limiting cases, respectively. These expressions of maximum power at given efficiency provide the optimal relations between power and efficiency which are tighter than the results in previous references.
Collapse
Affiliation(s)
- Xiu-Hua Zhao
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | | | - Z C Tu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
B S R, Mukherjee V, Divakaran U. Bath Engineering Enhanced Quantum Critical Engines. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1458. [PMID: 37420478 DOI: 10.3390/e24101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 07/09/2023]
Abstract
Driving a quantum system across quantum critical points leads to non-adiabatic excitations in the system. This in turn may adversely affect the functioning of a quantum machine which uses a quantum critical substance as its working medium. Here we propose a bath-engineered quantum engine (BEQE), in which we use the Kibble-Zurek mechanism and critical scaling laws to formulate a protocol for enhancing the performance of finite-time quantum engines operating close to quantum phase transitions. In the case of free fermionic systems, BEQE enables finite-time engines to outperform engines operating in the presence of shortcuts to adiabaticity, and even infinite-time engines under suitable conditions, thus showing the remarkable advantages offered by this technique. Open questions remain regarding the use of BEQE based on non-integrable models.
Collapse
Affiliation(s)
- Revathy B S
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 678557, India
| | - Victor Mukherjee
- Department of Physical Sciences, IISER Berhampur, Berhampur 760010, India
| | - Uma Divakaran
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 678557, India
| |
Collapse
|
6
|
Xu R. Reinforcement learning approach to shortcuts between thermodynamic states with minimum entropy production. Phys Rev E 2022; 105:054123. [PMID: 35706200 DOI: 10.1103/physreve.105.054123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
We propose a systematic method based on reinforcement learning (RL) techniques to find the optimal path to minimize the total entropy production between two equilibrium states of open systems at the same temperature in a given fixed period. Benefiting from the generalization of the deep RL techniques, we provide a powerful tool to address this problem in quantum systems even with two-dimensional continuous controllable parameters. We successfully apply our method to the classical and quantum two-level systems.
Collapse
Affiliation(s)
- Rongxing Xu
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan Mathematical Science Team, RIKEN Center for Advanced Inelligence Project (AIP), 1-4-1 Nihonbashi, Chuo-Ku, Tokyo 103-0027, Japan
| |
Collapse
|
7
|
Plata CA, Prados A, Trizac E, Guéry-Odelin D. Taming the Time Evolution in Overdamped Systems: Shortcuts Elaborated from Fast-Forward and Time-Reversed Protocols. PHYSICAL REVIEW LETTERS 2021; 127:190605. [PMID: 34797129 DOI: 10.1103/physrevlett.127.190605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/01/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Using a reverse-engineering approach on the time-distorted solution in a reference potential, we work out the external driving potential to be applied to a Brownian system in order to slow or accelerate the dynamics, or even to invert the arrow of time. By welding a direct and time-reversed evolution toward a well chosen common intermediate state, we analytically derive a smooth protocol to connect two arbitrary states in an arbitrarily short amount of time. Not only does the reverse-engineering approach proposed in this Letter contain the current-rather limited-catalog of explicit protocols, but it also provides a systematic strategy to build the connection between arbitrary states with a physically admissible driving. Optimization and further generalizations are also discussed.
Collapse
Affiliation(s)
- Carlos A Plata
- Université Paris-Saclay, CNRS, LPTMS, 91405 Orsay, France
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | | | - David Guéry-Odelin
- Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
8
|
Das J, Biswas LRR, Bag BC. Unified approach to stochastic thermodynamics: Application to a quantum heat engine. Phys Rev E 2020; 102:042138. [PMID: 33212624 DOI: 10.1103/physreve.102.042138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 09/17/2020] [Indexed: 11/07/2022]
Abstract
In the present study we have developed an alternative formulation for the quantum stochastic thermodynamics based on the c-number Langevin equation for the system-reservoir model. This is analogous to the classical one. Here we have considered both Markovian and non-Markovian dynamics (NMD). Consideration of the NMD is an important issue at the current state of the stochastic thermodynamics. Applying the present formalism, we have carried out a comparative study on the heat absorbed and the change of entropy with time for a linear quantum system and its classical analog for both Markovian and NMD. Here the strength of the thermal noise and its correlation time for the respective cases are the leading quantities to explain any distinguishable feature which may appear with the equilibration kinetics. For another application, we have proposed a formulation with classical look for a quantum stochastic heat engine. Using it we have presented a comparative study on the efficiency and its value at maximum power for a quantum stochastic heat engine and its classical analog. The engines are Carnot like which are coupled with their respective Markovian thermal baths. Here also the noise strength as well as the diffusion constant are the leading quantities to explain any noticeable feature.
Collapse
Affiliation(s)
- Joydip Das
- Department of Chemistry, Visva-Bharati, Santiniketan 731 235, West Bengal, India
| | - L R Rahul Biswas
- Department of Chemistry, Visva-Bharati, Santiniketan 731 235, West Bengal, India
| | - Bidhan Chandra Bag
- Department of Chemistry, Visva-Bharati, Santiniketan 731 235, West Bengal, India
| |
Collapse
|
9
|
Ono K, Shevchenko SN, Mori T, Moriyama S, Nori F. Analog of a Quantum Heat Engine Using a Single-Spin Qubit. PHYSICAL REVIEW LETTERS 2020; 125:166802. [PMID: 33124837 DOI: 10.1103/physrevlett.125.166802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
A quantum two-level system with periodically modulated energy splitting could provide a minimal universal quantum heat machine. We present the experimental realization and the theoretical description of such a two-level system as an impurity electron spin in a silicon tunnel field-effect transistor. In the incoherent regime, the system can behave analogously to either an Otto heat engine or a refrigerator. The coherent regime could be described as a superposition of those two regimes, producing specific interference fringes in the observed source-drain current.
Collapse
Affiliation(s)
- K Ono
- Advanced Device Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
- CEMS, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - S N Shevchenko
- B. Verkin Institute for Low Temperature Physics and Engineering, Kharkov 61103, Ukraine
- V. N. Karazin Kharkiv National University, Kharkov 61022, Ukraine
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - T Mori
- Device Technology Research Institute (D-Tech), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - S Moriyama
- Department of Electrical and Electronic Engineering, Tokyo Denki University, Adachi-ku, Tokyo 120-8551, Japan
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
10
|
Insinga AR. The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1060. [PMID: 33286828 PMCID: PMC7597134 DOI: 10.3390/e22091060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
In this work we considered the quantum Otto cycle within an optimization framework. The goal was maximizing the power for a heat engine or maximizing the cooling power for a refrigerator. In the field of finite-time quantum thermodynamics it is common to consider frictionless trajectories since these have been shown to maximize the work extraction during the adiabatic processes. Furthermore, for frictionless cycles, the energy of the system decouples from the other degrees of freedom, thereby simplifying the mathematical treatment. Instead, we considered general limit cycles and we used analytical techniques to compute the derivative of the work production over the whole cycle with respect to the time allocated for each of the adiabatic processes. By doing so, we were able to directly show that the frictionless cycle maximizes the work production, implying that the optimal power production must necessarily allow for some friction generation so that the duration of the cycle is reduced.
Collapse
Affiliation(s)
- Andrea R Insinga
- DTU Energy Conversion and Storage, Technical University of Denmark Anker Engelundsvej, Building 301, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Wang Q. Performance of quantum heat engines under the influence of long-range interactions. Phys Rev E 2020; 102:012138. [PMID: 32794960 DOI: 10.1103/physreve.102.012138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/29/2020] [Indexed: 11/07/2022]
Abstract
We examine a quantum heat engine with an interacting many-body working medium consisting of the long-range Kitaev chain to explore the role of long-range interactions in the performance of the quantum engine. By analytically studying two types of thermodynamic cycles, namely, the Otto cycle and Stirling cycle, we demonstrate that the work output and efficiency of a long-range interacting heat engine can be boosted by the long-range interactions, in comparison to the short-range counterpart. We further show that in the Otto cycle there exists an optimal condition for which the maximum enhancement in work output and efficiency can be achieved simultaneously by the long-range interactions. But, for the Stirling cycle, the condition which can give the maximum enhancement in work output does not lead to the maximum enhancement in efficiency. We also investigate how the parameter regimes under which the engine performance is enhanced by the long-range interactions evolve with a decrease in the range of interactions.
Collapse
Affiliation(s)
- Qian Wang
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China and CAMTP-Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, SI-2000 Maribor, Slovenia
| |
Collapse
|
12
|
Chen JF, Sun CP, Dong H. Boosting the performance of quantum Otto heat engines. Phys Rev E 2019; 100:032144. [PMID: 31640026 DOI: 10.1103/physreve.100.032144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 11/07/2022]
Abstract
To optimize the performance of a heat engine in a finite-time cycle, it is important to understand the finite-time effect of thermodynamic processes. Previously, we have shown that extra work is needed to complete a quantum adiabatic process in finite time, and proved that the extra work follows a C/τ^{2} scaling for long control time τ. There the oscillating part of the extra work is neglected due to the complex energy-level structure of the particular quantum system. However, such oscillation of the extra work cannot be neglected in some quantum systems with simple energy-level structure, e.g., the two-level system or the quantum harmonic oscillator. In this paper, we build the finite-time quantum Otto engine on these simple systems, and find that the oscillating extra work leads to a jagged edge in the constraint relation between the output power and the efficiency. By optimizing the control time of the adiabatic processes, the oscillation in the extra work is utilized to enhance the maximum power and the efficiency. We further design special control schemes with the zero extra work at the specific control time. Compared to the linear control scheme, these special control schemes of the finite-time adiabatic process improve the maximum power and the efficiency of the finite-time Otto engine.
Collapse
Affiliation(s)
- Jin-Fu Chen
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing, 100193, China
| | - Chang-Pu Sun
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing, 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing, 100193, China
| |
Collapse
|
13
|
Park JM, Lee S, Chun HM, Noh JD. Quantum mechanical bound for efficiency of quantum Otto heat engine. Phys Rev E 2019; 100:012148. [PMID: 31499873 DOI: 10.1103/physreve.100.012148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 06/10/2023]
Abstract
The second law of thermodynamics holds that the efficiency of heat engines, classical or quantum, cannot be greater than the universal Carnot efficiency. We discover another bound for the efficiency of a quantum Otto heat engine consisting of a harmonic oscillator. Dynamics of the engine is governed by the Lindblad equation for the density matrix, which is mapped to the Fokker-Planck equation for the quasiprobability distribution. Applying stochastic thermodynamics to the Fokker-Planck equation system, we obtain the ℏ-dependent quantum mechanical bound for the efficiency. It turns out that the bound is tighter than the Carnot efficiency. The engine achieves the bound in the low-temperature limit where quantum effects dominate. Our work demonstrates that quantum nature could suppress the performance of heat engines in terms of efficiency bound, work, and power output.
Collapse
Affiliation(s)
- Jong-Min Park
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
- Department of Physics, University of Seoul, Seoul 02504, Korea
| | - Sangyun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hyun-Myung Chun
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jae Dong Noh
- Department of Physics, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
14
|
Peña FJ, Negrete O, Alvarado Barrios G, Zambrano D, González A, Nunez AS, Orellana PA, Vargas P. Magnetic Otto Engine for an Electron in a Quantum Dot: Classical and Quantum Approach. ENTROPY (BASEL, SWITZERLAND) 2019; 21:E512. [PMID: 33267226 PMCID: PMC7515002 DOI: 10.3390/e21050512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 11/29/2022]
Abstract
We studied the performance of classical and quantum magnetic Otto cycle with a working substance composed of a single quantum dot using the Fock-Darwin model with the inclusion of the Zeeman interaction. Modulating an external/perpendicular magnetic field, in the classical approach, we found an oscillating behavior in the total work extracted that was not present in the quantum formulation.We found that, in the classical approach, the engine yielded a greater performance in terms of total work extracted and efficiency than when compared with the quantum approach. This is because, in the classical case, the working substance can be in thermal equilibrium at each point of the cycle, which maximizes the energy extracted in the adiabatic strokes.
Collapse
Affiliation(s)
- Francisco J. Peña
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
| | - Oscar Negrete
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
- Departamento de Física, Universidad de Santiago de Chile (USACH), Avenida Ecuador 3493, 9170022 Santiago, Chile
| | - Gabriel Alvarado Barrios
- Departamento de Física, Universidad de Santiago de Chile (USACH), Avenida Ecuador 3493, 9170022 Santiago, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, 8320000 Santiago, Chile
| | - David Zambrano
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
| | - Alejandro González
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
| | - Alvaro S. Nunez
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, 8320000 Santiago, Chile
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, 8370456 Santiago, Chile
| | - Pedro A. Orellana
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
| | - Patricio Vargas
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, 8320000 Santiago, Chile
| |
Collapse
|
15
|
Gonzalez D, Gutiérrez-Ruiz D, Vergara JD. Classical analog of the quantum metric tensor. Phys Rev E 2019; 99:032144. [PMID: 30999496 DOI: 10.1103/physreve.99.032144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 11/07/2022]
Abstract
We present a classical analog of the quantum metric tensor, which is defined for classical integrable systems that undergo an adiabatic evolution governed by slowly varying parameters. This classical metric measures the distance, on the parameter space, between two infinitesimally different points in phase space, whereas the quantum metric tensor measures the distance between two infinitesimally different quantum states. We discuss the properties of this metric and calculate its components, exactly in the cases of the generalized harmonic oscillator, the generalized harmonic oscillator with a linear term, and perturbatively for the quartic anharmonic oscillator. Finally, we propose alternative expressions for the quantum metric tensor and Berry's connection in terms of quantum operators.
Collapse
Affiliation(s)
- Diego Gonzalez
- Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México 04510, México
| | - Daniel Gutiérrez-Ruiz
- Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México 04510, México
| | - J David Vergara
- Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México 04510, México
| |
Collapse
|
16
|
Francica G, Goold J, Plastina F. Role of coherence in the nonequilibrium thermodynamics of quantum systems. Phys Rev E 2019; 99:042105. [PMID: 31108617 DOI: 10.1103/physreve.99.042105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 06/09/2023]
Abstract
Exploiting the relative entropy of coherence, we isolate the coherent contribution in the energetics of a driven nonequilibrium quantum system. We prove that a division of the irreversible work can be made into a coherent and incoherent part. This provides an operational criterion for quantifying the coherent contribution in a generic nonequilibrium transformation on a closed quantum system. We then study such a contribution in two physical models of a driven qubit and kicked rotor. In addition, we also show that coherence generation is connected to the nonadiabaticity of a processes, for which it gives the dominant contribution for slow-enough transformations. The amount of generated coherence in the energy eigenbasis is equivalent to the change in diagonal entropy, and here we show that it fulfills a fluctuation theorem.
Collapse
Affiliation(s)
- G Francica
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
- INFN-Gruppo Collegato di Cosenza, 87036, Cosenza, Italy
| | - J Goold
- School of Physics, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - F Plastina
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
- INFN-Gruppo Collegato di Cosenza, 87036, Cosenza, Italy
| |
Collapse
|
17
|
Çakmak B, Müstecaplıoğlu ÖE. Spin quantum heat engines with shortcuts to adiabaticity. Phys Rev E 2019; 99:032108. [PMID: 30999442 DOI: 10.1103/physreve.99.032108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Indexed: 06/09/2023]
Abstract
We consider a finite-time quantum Otto cycle with single- and two spin-1/2 systems as its working medium. To mimic adiabatic dynamics at a finite time, we employ a shortcut-to-adiabaticity technique and evaluate the performance of the engine including the cost of the shortcut. We compare our results with the true adiabatic and nonadiabatic performances of the same cycle. Our findings indicate that the use of the shortcut-to-adiabaticity scheme significantly enhances the performance of the quantum Otto engine as compared to its adiabatic and nonadiabatic counterparts for different figures of merit.
Collapse
Affiliation(s)
- Barış Çakmak
- Department of Physics, Koç University, İstanbul, Sarıyer 34450, Turkey
- College of Engineering and Natural Sciences, Bahçeşehir University, Beşiktaş, Istanbul 34353, Turkey
| | | |
Collapse
|
18
|
Abah O, Paternostro M. Shortcut-to-adiabaticity Otto engine: A twist to finite-time thermodynamics. Phys Rev E 2019; 99:022110. [PMID: 30934342 DOI: 10.1103/physreve.99.022110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 06/09/2023]
Abstract
We consider a finite-time Otto engine operating on a quantum harmonic oscillator and driven by shortcut-to-adiabaticity (STA) techniques to speed up its cycle. We study its efficiency and power when internal friction, time-averaged work, and work fluctuations are used as quantitative figures of merit, showing that time-averaged efficiency and power are useful cost functions for the characterization of the performance of the engine. We then use the minimum allowed time for validity of STA protocol relation to establish a physically relevant bound to the efficiency at maximum power of the STA-driven cycle.
Collapse
Affiliation(s)
- Obinna Abah
- Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Mauro Paternostro
- Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
19
|
Zhu L, Wang J. Calculating the free energy difference by applying the Jarzynski equality to a virtual integrable system. Phys Rev E 2018; 98:022117. [PMID: 30253520 DOI: 10.1103/physreve.98.022117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 11/07/2022]
Abstract
The Jarzynski equality (JE) provides a nonequilibrium method to measure and calculate the free energy difference (FED). Note that if two systems share the same Hamiltonian at two equilibrium states, respectively, they share the same FED between these two equilibrium states as well. Therefore the calculation of the FED of a system may be facilitated by considering instead another virtual system designed to this end. Taking advantage of this flexibility and the JE, we show that by introducing an integrable virtual system, the evolution problem involved in the JE can be solved. As a consequence, FED is expressed in the form of an equilibrium equality, in contrast with the nonequilibrium JE it is based on. Numerically, this result allows FED to be computed by sampling the canonical ensemble directly and the computational cost can be significantly reduced. The effectiveness and efficiency of this scheme are illustrated with numerical studies of several representative model systems.
Collapse
Affiliation(s)
- Liyun Zhu
- Department of Physics, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), and Jiujiang Research Institute, Xiamen University, Xiamen 361005, Fujian, China
| | - Jiao Wang
- Department of Physics, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), and Jiujiang Research Institute, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
20
|
Deng S, Chenu A, Diao P, Li F, Yu S, Coulamy I, del Campo A, Wu H. Superadiabatic quantum friction suppression in finite-time thermodynamics. SCIENCE ADVANCES 2018; 4:eaar5909. [PMID: 29719865 PMCID: PMC5922798 DOI: 10.1126/sciadv.aar5909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Optimal performance of thermal machines is reached by suppressing friction. Friction in quantum thermodynamics results from fast driving schemes that generate nonadiabatic excitations. The far-from-equilibrium dynamics of quantum devices can be tailored by shortcuts to adiabaticity to suppress quantum friction. We experimentally demonstrate friction-free superadiabatic strokes with a trapped unitary Fermi gas as a working substance and establish the equivalence between the superadiabatic work and its adiabatic value.
Collapse
Affiliation(s)
- Shujin Deng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Aurélia Chenu
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Pengpeng Diao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Fang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Shi Yu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Ivan Coulamy
- Department of Physics, University of Massachusetts, Boston, MA 02125, USA
- Departamento de Física, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Adolfo del Campo
- Department of Physics, University of Massachusetts, Boston, MA 02125, USA
| | - Haibin Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
21
|
Abstract
In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.
Collapse
Affiliation(s)
- Dionisis Stefanatos
- Division of Physical Sciences and Applications, Hellenic Army Academy, Vari, Athens 16673, Greece
| |
Collapse
|
22
|
Jaramillo JD, Deng J, Gong J. Quantum work fluctuations in connection with the Jarzynski equality. Phys Rev E 2018; 96:042119. [PMID: 29347528 DOI: 10.1103/physreve.96.042119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/07/2022]
Abstract
A result of great theoretical and experimental interest, the Jarzynski equality predicts a free energy change ΔF of a system at inverse temperature β from an ensemble average of nonequilibrium exponential work, i.e., 〈e^{-βW}〉=e^{-βΔF}. The number of experimental work values needed to reach a given accuracy of ΔF is determined by the variance of e^{-βW}, denoted var(e^{-βW}). We discover in this work that var(e^{-βW}) in both harmonic and anharmonic Hamiltonian systems can systematically diverge in nonadiabatic work protocols, even when the adiabatic protocols do not suffer from such divergence. This divergence may be regarded as a type of dynamically induced phase transition in work fluctuations. For a quantum harmonic oscillator with time-dependent trapping frequency as a working example, any nonadiabatic work protocol is found to yield a diverging var(e^{-βW}) at sufficiently low temperatures, markedly different from the classical behavior. The divergence of var(e^{-βW}) indicates the too-far-from-equilibrium nature of a nonadiabatic work protocol and makes it compulsory to apply designed control fields to suppress the quantum work fluctuations in order to test the Jarzynski equality.
Collapse
Affiliation(s)
- Juan D Jaramillo
- Department of Physics, National University of Singapore, Singapore 117546
| | - Jiawen Deng
- NUS Graduate School for Integrative Science and Engineering, Singapore 117597
| | - Jiangbin Gong
- Department of Physics, National University of Singapore, Singapore 117546.,NUS Graduate School for Integrative Science and Engineering, Singapore 117597
| |
Collapse
|
23
|
|
24
|
Bravetti A, Tapias D. Thermodynamic cost for classical counterdiabatic driving. Phys Rev E 2017; 96:052107. [PMID: 29347640 DOI: 10.1103/physreve.96.052107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Motivated by the recent growing interest about the thermodynamic cost of shortcuts to adiabaticity, we consider the cost of driving a classical system by the so-called counterdiabatic driving (CD). To do so, we proceed in three steps: first we review a general definition recently put forward in the literature for the thermodynamic cost of driving a Hamiltonian system; then we provide a new complementary definition of cost, which is of particular relevance for cases where the average excess work vanishes; finally, we apply our general framework to the case of CD. Interestingly, we find that in such a case our results are the exact classical counterparts of those reported by Funo et al. [Phys. Rev. Lett. 118, 100602 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.100602]. In particular we show that a universal trade-off between speed and cost for CD also exists in the classical case. To illustrate our points we consider the example of a time-dependent harmonic oscillator subject to different strategies of adiabatic control.
Collapse
Affiliation(s)
- Alessandro Bravetti
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Diego Tapias
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
25
|
|
26
|
Roldán É, Gupta S. Path-integral formalism for stochastic resetting: Exactly solved examples and shortcuts to confinement. Phys Rev E 2017; 96:022130. [PMID: 28950574 DOI: 10.1103/physreve.96.022130] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Indexed: 06/07/2023]
Abstract
We study the dynamics of overdamped Brownian particles diffusing in conservative force fields and undergoing stochastic resetting to a given location at a generic space-dependent rate of resetting. We present a systematic approach involving path integrals and elements of renewal theory that allows us to derive analytical expressions for a variety of statistics of the dynamics such as (i) the propagator prior to first reset, (ii) the distribution of the first-reset time, and (iii) the spatial distribution of the particle at long times. We apply our approach to several representative and hitherto unexplored examples of resetting dynamics. A particularly interesting example for which we find analytical expressions for the statistics of resetting is that of a Brownian particle trapped in a harmonic potential with a rate of resetting that depends on the instantaneous energy of the particle. We find that using energy-dependent resetting processes is more effective in achieving spatial confinement of Brownian particles on a faster time scale than performing quenches of parameters of the harmonic potential.
Collapse
Affiliation(s)
- Édgar Roldán
- Max-Planck Institute for the Physics of Complex Systems, cfAED and GISC, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Shamik Gupta
- Department of Physics, Ramakrishna Mission Vivekananda University, Belur Math, Howrah 711 202, West Bengal, India
| |
Collapse
|
27
|
Abstract
We study the shuttling of an atom in a trap with controllable position and frequency. Using invariant-based inverse engineering, protocols in which the trap is simultaneously displaced and expanded are proposed to speed up transport between stationary trap locations as well as launching processes with narrow final-velocity distributions. Depending on the physical constraints imposed, either simultaneous or sequential approaches may be faster. We consider first a perfectly harmonic trap, and then extend the treatment to generic traps. Finally, we apply this general framework to a double-well potential to separate different motional states with different launching velocities.
Collapse
|
28
|
Silveri MP, Tuorila JA, Thuneberg EV, Paraoanu GS. Quantum systems under frequency modulation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:056002. [PMID: 28379844 DOI: 10.1088/1361-6633/aa5170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We review the physical phenomena that arise when quantum mechanical energy levels are modulated in time. The dynamics resulting from changes in the transition frequency is a problem studied since the early days of quantum mechanics. It has been of constant interest both experimentally and theoretically since, with the simple two-state model providing an inexhaustible source of novel concepts. When the transition frequency of a quantum system is modulated, several phenomena can be observed, such as Landau-Zener-Stückelberg-Majorana interference, motional averaging and narrowing, and the formation of dressed states with the appearance of sidebands in the spectrum. Adiabatic changes result in the accumulation of geometric phases, which can be used to create topological states. In recent years, an exquisite experimental control in the time domain was gained through the parameters entering the Hamiltonian, and high-fidelity readout schemes allowed the state of the system to be monitored non-destructively. These developments were made in the field of quantum devices, especially in superconducting qubits, as a well as in atomic physics, in particular in ultracold gases. As a result of these advances, it became possible to demonstrate many of the fundamental effects that arise in a quantum system when its transition frequencies are modulated. The purpose of this review is to present some of these developments, from two-state atoms and harmonic oscillators to multilevel and many-particle systems.
Collapse
Affiliation(s)
- M P Silveri
- Department of Physics, University of Oulu, PO Box 3000, FI-90014, Finland. Department of Physics, Yale University, New Haven, CT 06520, United States of America
| | | | | | | |
Collapse
|
29
|
Funo K, Zhang JN, Chatou C, Kim K, Ueda M, Del Campo A. Universal Work Fluctuations During Shortcuts to Adiabaticity by Counterdiabatic Driving. PHYSICAL REVIEW LETTERS 2017; 118:100602. [PMID: 28339228 DOI: 10.1103/physrevlett.118.100602] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Counterdiabatic driving (CD) exploits auxiliary control fields to tailor the nonequilibrium dynamics of a quantum system, making possible the suppression of dissipated work in finite-time thermodynamics and the engineering of optimal thermal machines with no friction. We show that while the mean work done by the auxiliary controls vanishes, CD leads to a broadening of the work distribution. We derive a fundamental inequality that relates nonequilibrium work fluctuations to the operation time and quantifies the thermodynamic cost of CD in both critical and noncritical systems.
Collapse
Affiliation(s)
- Ken Funo
- School of Physics, Peking University, Beijing 100871, China
| | - Jing-Ning Zhang
- Center for Quantum Information, Institute for the Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Cyril Chatou
- Université Paris 13, Sorbonne Paris Cité, 99 Avenue J.-B. Clément, F-93430 Villetaneuse, France
- Department of Physics, University of Massachusetts, Boston, Massachusetts 02125, USA
| | - Kihwan Kim
- Center for Quantum Information, Institute for the Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Masahito Ueda
- Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Adolfo Del Campo
- Department of Physics, University of Massachusetts, Boston, Massachusetts 02125, USA
| |
Collapse
|
30
|
Jarzynski C, Deffner S, Patra A, Subaşı Y. Fast forward to the classical adiabatic invariant. Phys Rev E 2017; 95:032122. [PMID: 28415339 DOI: 10.1103/physreve.95.032122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 06/07/2023]
Abstract
We show how the classical action, an adiabatic invariant, can be preserved under nonadiabatic conditions. Specifically, for a time-dependent Hamiltonian H=p^{2}/2m+U(q,t) in one degree of freedom, and for an arbitrary choice of action I_{0}, we construct a so-called fast-forward potential energy function V_{FF}(q,t) that, when added to H, guides all trajectories with initial action I_{0} to end with the same value of action. We use this result to construct a local dynamical invariant J(q,p,t) whose value remains constant along these trajectories. We illustrate our results with numerical simulations. Finally, we sketch how our classical results may be used to design approximate quantum shortcuts to adiabaticity.
Collapse
Affiliation(s)
- Christopher Jarzynski
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Sebastian Deffner
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA and Department of Physics, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | - Ayoti Patra
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Yiğit Subaşı
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
31
|
Deng J, Tan AM, Hänggi P, Gong J. Merits and qualms of work fluctuations in classical fluctuation theorems. Phys Rev E 2017; 95:012106. [PMID: 28208437 DOI: 10.1103/physreve.95.012106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Indexed: 11/07/2022]
Abstract
Work is one of the most basic notions in statistical mechanics, with work fluctuation theorems being one central topic in nanoscale thermodynamics. With Hamiltonian chaos commonly thought to provide a foundation for classical statistical mechanics, here we present general salient results regarding how (classical) Hamiltonian chaos generically impacts on nonequilibrium work fluctuations. For isolated chaotic systems prepared with a microcanonical distribution, work fluctuations are minimized and vanish altogether in adiabatic work protocols. For isolated chaotic systems prepared at an initial canonical distribution at inverse temperature β, work fluctuations depicted by the variance of e^{-βW} are also minimized by adiabatic work protocols. This general result indicates that, if the variance of e^{-βW} diverges for an adiabatic work protocol, it diverges for all nonadiabatic work protocols sharing the same initial and final Hamiltonians. Such divergence is hence not an isolated event and thus greatly impacts on the efficiency of using Jarzynski's equality to simulate free-energy differences. Theoretical results are illustrated in a Sinai model. Our general insights shall boost studies in nanoscale thermodynamics and are of fundamental importance in designing useful work protocols.
Collapse
Affiliation(s)
- Jiawen Deng
- NUS Graduate School for Integrative Science and Engineering, Singapore 117597
| | - Alvis Mazon Tan
- Department of Physics, National University of Singapore, Singapore 117546
| | - Peter Hänggi
- Department of Physics, National University of Singapore, Singapore 117546.,Institute of Physics, University of Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany
| | - Jiangbin Gong
- NUS Graduate School for Integrative Science and Engineering, Singapore 117597.,Department of Physics, National University of Singapore, Singapore 117546
| |
Collapse
|
32
|
Shortcut to adiabatic control of soliton matter waves by tunable interaction. Sci Rep 2016; 6:38258. [PMID: 28009007 PMCID: PMC5180186 DOI: 10.1038/srep38258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/07/2016] [Indexed: 11/23/2022] Open
Abstract
We propose a method for shortcut to adiabatic control of soliton matter waves in harmonic traps. The tunable interaction controlled by Feshbach resonance is inversely designed to achieve fast and high-fidelity compression of soliton matter waves as compared to the conventional adiabatic compression. These results pave the way to control the nonlinear dynamics for matter waves and optical solitons by using shortcuts to adiabaticity.
Collapse
|
33
|
Funo K, Shitara T, Ueda M. Work fluctuation and total entropy production in nonequilibrium processes. Phys Rev E 2016; 94:062112. [PMID: 28085310 DOI: 10.1103/physreve.94.062112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Indexed: 11/07/2022]
Abstract
Work fluctuation and total entropy production play crucial roles in small thermodynamic systems subject to large thermal fluctuations. We investigate a trade-off relation between them in a nonequilibrium situation in which a system starts from an arbitrary nonequilibrium state. We apply a variational method to study this problem and find a stationary solution against variations over protocols that describe the time dependence of the Hamiltonian of the system. Using the stationary solution, we find the minimum of the total entropy production for a given amount of work fluctuation. An explicit protocol that achieves this is constructed from an adiabatic process followed by a quasistatic process. The obtained results suggest how one can control the nonequilibrium dynamics of the system while suppressing its work fluctuation and total entropy production.
Collapse
Affiliation(s)
- Ken Funo
- School of Physics, Peking University, Beijing 100871, China
| | - Tomohiro Shitara
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahito Ueda
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
34
|
Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space. Nat Commun 2016; 7:12999. [PMID: 27669897 PMCID: PMC5052658 DOI: 10.1038/ncomms12999] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/19/2016] [Indexed: 11/22/2022] Open
Abstract
The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we report the experimental implementation of counterdiabatic driving in a continuous variable system, a shortcut to the adiabatic transport of a trapped ion in phase space. The resulting dynamics is equivalent to a ‘fast-motion video' of the adiabatic trajectory. The robustness of this protocol is shown to surpass that of competing schemes based on classical local controls and Fourier optimization methods. Our results demonstrate that shortcuts to adiabaticity provide a robust speedup of quantum protocols of wide applicability in quantum technologies. The application of adiabatic protocols in quantum technologies is limited due to the detrimental action of decoherence. Here the authors demonstrate a shortcut to adiabaticity via counterdiabatic driving in a trapped ion system.
Collapse
|
35
|
Zheng Y, Hänggi P, Poletti D. Occurrence of discontinuities in the performance of finite-time quantum Otto cycles. Phys Rev E 2016; 94:012137. [PMID: 27575106 DOI: 10.1103/physreve.94.012137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 06/06/2023]
Abstract
We study a quantum Otto cycle in which the strokes are performed in finite time. The cycle involves energy measurements at the end of each stroke to allow for the respective determination of work. We then optimize for the work and efficiency of the cycle by varying the time spent in the different strokes and find that the optimal value of the ratio of time spent on each stroke goes through sudden changes as the parameters of this cycle vary continuously. The position of these discontinuities depends on the optimized quantity under consideration such as the net work output or the efficiency.
Collapse
Affiliation(s)
- Yuanjian Zheng
- Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Peter Hänggi
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany
- Nanosystems Initiative Munich, Schellingstr. 4, D-80799 München, Germany
- Department of Physics, National University of Singapore, 117542 Singapore, Republic of Singapore
| | - Dario Poletti
- Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
- MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore
| |
Collapse
|
36
|
Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity. ENTROPY 2016. [DOI: 10.3390/e18050168] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Cui YY, Chen X, Muga JG. Transient Particle Energies in Shortcuts to Adiabatic Expansions of Harmonic Traps. J Phys Chem A 2015; 120:2962-9. [DOI: 10.1021/acs.jpca.5b06090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang-Yang Cui
- Department
of Physics, Shanghai University, 200444 Shanghai, People’s Republic of China
| | - Xi Chen
- Department
of Physics, Shanghai University, 200444 Shanghai, People’s Republic of China
| | - J. G. Muga
- Department
of Physics, Shanghai University, 200444 Shanghai, People’s Republic of China
- Departamento
de Química-Física, UPV-EHU, Apdo 644, 48080 Bilbao, Spain
| |
Collapse
|
38
|
Xiao G, Gong J. Principle of minimal work fluctuations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022130. [PMID: 26382367 DOI: 10.1103/physreve.92.022130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 06/05/2023]
Abstract
Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].
Collapse
Affiliation(s)
- Gaoyang Xiao
- Department of Physics, National University of Singapore, Singapore 117542
| | - Jiangbin Gong
- Department of Physics, National University of Singapore, Singapore 117542
| |
Collapse
|
39
|
Zheng Y, Poletti D. Quantum statistics and the performance of engine cycles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012110. [PMID: 26274128 DOI: 10.1103/physreve.92.012110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 06/04/2023]
Abstract
We study the role of quantum statistics in the performance of Otto cycles. First, we show analytically that the work distributions for bosonic and fermionic working fluids are identical for cycles driven by harmonic trapping potentials. Subsequently, in the case of nonharmonic potentials, we find that the interplay between different energy level spacings and particle statistics strongly affects the performances of the engine cycle. To demonstrate this, we examine three trapping potentials which induce different (single-particle) energy level spacings: monotonically decreasing with the level number, monotonically increasing, and the case in which the level spacing does not vary monotonically.
Collapse
Affiliation(s)
- Yuanjian Zheng
- Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Dario Poletti
- Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
- MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore
| |
Collapse
|
40
|
Xiao G, Gong J. Construction and optimization of a quantum analog of the Carnot cycle. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012118. [PMID: 26274135 DOI: 10.1103/physreve.92.012118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 06/04/2023]
Abstract
The quantum analog of Carnot cycles in few-particle systems consists of two quantum adiabatic steps and two isothermal steps. This construction is formally justified by use of a minimum work principle. It is then shown, using minimal assumptions of work or heat in nanoscale systems, that the heat-to-work efficiency of such quantum heat engine cycles can be further optimized via two conditions regarding the expectation value of some generalized force operators evaluated at equilibrium states. In general the optimized efficiency is system specific, lower than the Carnot efficiency, and dependent upon both temperatures of the cold and hot reservoirs. Simple computational examples are used to illustrate our theory. The results should be an important guide towards the design of favorable working conditions of a realistic quantum heat engine.
Collapse
Affiliation(s)
- Gaoyang Xiao
- Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542
| | - Jiangbin Gong
- Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542
| |
Collapse
|
41
|
Campbell S, De Chiara G, Paternostro M, Palma GM, Fazio R. Shortcut to adiabaticity in the Lipkin-Meshkov-Glick model. PHYSICAL REVIEW LETTERS 2015; 114:177206. [PMID: 25978261 DOI: 10.1103/physrevlett.114.177206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Indexed: 06/04/2023]
Abstract
We study transitionless quantum driving in an infinite-range many-body system described by the Lipkin-Meshkov-Glick model. Despite the correlation length being always infinite the closing of the gap at the critical point makes the driving Hamiltonian of increasing complexity also in this case. To this aim we develop a hybrid strategy combining a shortcut to adiabaticity and optimal control that allows us to achieve remarkably good performance in suppressing the defect production across the phase transition.
Collapse
Affiliation(s)
- Steve Campbell
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, United Kingdom
| | - Gabriele De Chiara
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, United Kingdom
| | - Mauro Paternostro
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, United Kingdom
| | - G Massimo Palma
- NEST, Istituto Nanoscienze-CNR and Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, via Archirafi 36, I-90123 Palermo, Italy
| | - Rosario Fazio
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, I-56126 Pisa, Italy
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| |
Collapse
|
42
|
Plastina F, Alecce A, Apollaro TJG, Falcone G, Francica G, Galve F, Lo Gullo N, Zambrini R. Irreversible work and inner friction in quantum thermodynamic processes. PHYSICAL REVIEW LETTERS 2014; 113:260601. [PMID: 25615295 DOI: 10.1103/physrevlett.113.260601] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 06/04/2023]
Abstract
We discuss the thermodynamics of closed quantum systems driven out of equilibrium by a change in a control parameter and undergoing a unitary process. We compare the work actually done on the system with the one that would be performed along ideal adiabatic and isothermal transformations. The comparison with the latter leads to the introduction of irreversible work, while that with the former leads to the introduction of inner friction. We show that these two quantities can be treated on an equal footing, as both can be linked with the heat exchanged in thermalization processes and both can be expressed as relative entropies. Furthermore, we show that a specific fluctuation relation for the entropy production associated with the inner friction exists, which allows the inner friction to be written in terms of its cumulants.
Collapse
Affiliation(s)
- F Plastina
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy and INFN-Gruppo collegato di Cosenza, Cosenza, Italy
| | - A Alecce
- Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova, via Marzolo 8, 35131 Padova (Italy)
| | - T J G Apollaro
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy and INFN-Gruppo collegato di Cosenza, Cosenza, Italy and Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, United Kingdom
| | - G Falcone
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy and INFN-Gruppo collegato di Cosenza, Cosenza, Italy
| | - G Francica
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy and INFN-Gruppo collegato di Cosenza, Cosenza, Italy
| | - F Galve
- IFISC (UIB-CSIC), Instituto de Física Interdisciplinar y Sistemas Complejos, UIB Campus, E-07122 Palma de Mallorca, Spain
| | - N Lo Gullo
- Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova, via Marzolo 8, 35131 Padova (Italy) and CNISM, Sezione di Padova, Italy
| | - R Zambrini
- IFISC (UIB-CSIC), Instituto de Física Interdisciplinar y Sistemas Complejos, UIB Campus, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
43
|
Xiao G, Gong J. Suppression of work fluctuations by optimal control: An approach based on Jarzynski's equality. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052132. [PMID: 25493764 DOI: 10.1103/physreve.90.052132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 06/04/2023]
Abstract
Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, aspects of work fluctuations will be an important factor in designing nanoscale heat engines. In this work, an optimal control approach directly exploiting Jarzynski's equality is proposed to effectively suppress the fluctuations in the work statistics, for systems (initially at thermal equilibrium) subject to a work protocol but isolated from a bath during the protocol. The control strategy is to minimize the deviations of individual values of e^{-βW} from their ensemble average given by e^{-βΔF}, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. It is further shown that even when the system Hamiltonian is not fully known, it is still possible to suppress work fluctuations through a feedback loop, by refining the control target function on the fly through Jarzynski's equality itself. Numerical experiments are based on linear and nonlinear parametric oscillators. Optimal control results for linear parametric oscillators are also benchmarked with early results based on shortcuts to adiabaticity.
Collapse
Affiliation(s)
- Gaoyang Xiao
- Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542
| | - Jiangbin Gong
- Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542
| |
Collapse
|
44
|
More bang for your buck: super-adiabatic quantum engines. Sci Rep 2014; 4:6208. [PMID: 25163421 PMCID: PMC4147366 DOI: 10.1038/srep06208] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/16/2014] [Indexed: 11/08/2022] Open
Abstract
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle.
Collapse
|
45
|
Zheng Y, Poletti D. Work and efficiency of quantum Otto cycles in power-law trapping potentials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012145. [PMID: 25122289 DOI: 10.1103/physreve.90.012145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 06/03/2023]
Abstract
We study the performance of a quantum Otto cycle operating in trapping potentials of different shapes. We show that, while both the mean work output and the efficiency of two Otto cycles in different trapping potentials can be made equal, the work probability distribution will still be strongly affected by the difference in structure of the energy levels. To exemplify our results, we study the family of potentials of the form V(t)(x) ∼ x(2q). This family of potentials possesses a simple scaling property that allows for analytical insights into the efficiency and work output of the cycle. We perform a comparison of quantum Otto cycles in various physically relevant scenarios and find that in certain instances, the efficiency of the cycle is greater when using potentials with larger values of q, while in other cases, the efficiency is greater with harmonic traps.
Collapse
Affiliation(s)
- Yuanjian Zheng
- Singapore University of Technology and Design, 20 Dover Drive, 138682 Singapore
| | - Dario Poletti
- Singapore University of Technology and Design, 20 Dover Drive, 138682 Singapore
| |
Collapse
|
46
|
Stefanatos D. Optimal efficiency of a noisy quantum heat engine. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012119. [PMID: 25122263 DOI: 10.1103/physreve.90.012119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Indexed: 06/03/2023]
Abstract
In this article we use optimal control to maximize the efficiency of a quantum heat engine executing the Otto cycle in the presence of external noise. We optimize the engine performance for both amplitude and phase noise. In the case of phase damping we additionally show that the ideal performance of a noiseless engine can be retrieved in the adiabatic (long time) limit. The results obtained here are useful in the quest for absolute zero, the design of quantum refrigerators that can cool a physical system to the lowest possible temperature. They can also be applied to the optimal control of a collection of classical harmonic oscillators sharing the same time-dependent frequency and subjected to similar noise mechanisms. Finally, our methodology can be used for the optimization of other interesting thermodynamic processes.
Collapse
|
47
|
Tu ZC. Stochastic heat engine with the consideration of inertial effects and shortcuts to adiabaticity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052148. [PMID: 25353780 DOI: 10.1103/physreve.89.052148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Indexed: 06/04/2023]
Abstract
When a Brownian particle in contact with a heat bath at a constant temperature is controlled by a time-dependent harmonic potential, its distribution function can be rigorously derived from the Kramers equation with the consideration of the inertial effect of the Brownian particle. Based on this rigorous solution and the concept of shortcuts to adiabaticity, we construct a stochastic heat engine by employing the time-dependent harmonic potential to manipulate the Brownian particle to complete a thermodynamic cycle. We find that the efficiency at maximum power of this stochastic heat engine is equal to 1-sqrt[T(c)/T(h)], where T(c) and T(h) are the temperatures of the cold bath and the hot one in the thermodynamic cycle, respectively.
Collapse
Affiliation(s)
- Z C Tu
- Department of Physics, Beijing Normal University, Beijing 100875, China and Beijing Computational Science Research Center, Beijing 100084, China
| |
Collapse
|
48
|
Watanabe G, Venkatesh BP, Talkner P. Generalized energy measurements and modified transient quantum fluctuation theorems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052116. [PMID: 25353748 DOI: 10.1103/physreve.89.052116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Indexed: 06/04/2023]
Abstract
Determining the work which is supplied to a system by an external agent provides a crucial step in any experimental realization of transient fluctuation relations. This, however, poses a problem for quantum systems, where the standard procedure requires the projective measurement of energy at the beginning and the end of the protocol. Unfortunately, projective measurements, which are preferable from the point of view of theory, seem to be difficult to implement experimentally. We demonstrate that, when using a particular type of generalized energy measurements, the resulting work statistics is simply related to that of projective measurements. This relation between the two work statistics entails the existence of modified transient fluctuation relations. The modifications are exclusively determined by the errors incurred in the generalized energy measurements. They are universal in the sense that they do not depend on the force protocol. Particularly simple expressions for the modified Crooks relation and Jarzynski equality are found for Gaussian energy measurements. These can be obtained by a sequence of sufficiently many generalized measurements which need not be Gaussian. In accordance with the central limit theorem, this leads to an effective error reduction in the individual measurements and even yields a projective measurement in the limit of infinite repetitions.
Collapse
Affiliation(s)
- Gentaro Watanabe
- Asia Pacific Center for Theoretical Physics (APCTP), San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, Korea and Department of Physics, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - B Prasanna Venkatesh
- Asia Pacific Center for Theoretical Physics (APCTP), San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Peter Talkner
- Asia Pacific Center for Theoretical Physics (APCTP), San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, Korea and Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany
| |
Collapse
|