1
|
P AM, Joseph T. Anti-matching effect in a two dimensional driven vortex lattice in the presence of periodic pinning. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:495401. [PMID: 39191271 DOI: 10.1088/1361-648x/ad743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
The dynamics of a driven superconducting vortex lattice in a two-dimensional (2D) periodic potential of square symmetry is studied using Brownian dynamics simulations. The range and strength of the vortex-substrate interaction are taken to be of the same order as that of the vortex-vortex interaction. The matching effect in a driven vortex lattice in the presence of a periodic array of pinning centers refers to the enhanced resistance to the vortex lattice motion when the ratio of the number of vortices to the number of pinning centers (called the filling fraction) takes simple fractional values. In particular, one expects a pronounced matching effect when the filling fraction is one. Contrary to this expectation, a drop in the vortex lattice mobility is observed as the filling fraction is increased from value one. This anti-matching effect can be understood in terms of the structural change in the vortex lattice as the filling fraction is varied. The dip observed in vortex mobility as a function of temperature when the filling fraction equals one (Joseph T 2020PhysicaA556124737), is studied for other values of filling above and below one. The behavior is found to persist for other fillings as well and is associated with the melting of the vortex lattice. The temperature at which the lattice melts is found to increase with drive and explains the shift in the temperature at which mobility is a minimum, locally.
Collapse
Affiliation(s)
- Akhilesh M P
- Department of Physics, BITS-Pilani, K K Birla Goa Campus, Zuarinagar Goa-403726, India
| | - Toby Joseph
- Department of Physics, BITS-Pilani, K K Birla Goa Campus, Zuarinagar Goa-403726, India
| |
Collapse
|
2
|
Bharti, Deb D. Substrate induced freezing, melting and depinning transitions in two-dimensional liquid crystalline systems. Phys Chem Chem Phys 2022; 24:5154-5163. [PMID: 35156967 DOI: 10.1039/d1cp04366h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use molecular dynamics simulations to investigate the ordering phenomena in two-dimensional (2D) liquid crystals over the one-dimensional periodic substrate (1DPS). We have used Gay-Berne (GB) potential to model the interaction between a pair of liquid crystalline (LC) particles. The underlying substrate potential with which the GB particles interact varies sinusoidally in one direction only. At a given temperature and density of the GB system, we varied the substrate's periodicity (as) but fixed the substrate strength. We observed that with a small value of as, an underlying substrate helps to stabilize a disordered LC nematic phase to a 2D solid phase. However, for an intermediate range of as, the system melts and transitions to a modulate-smectic. Finally, with a further increase in as, the system undergoes a structural depinning transition and returns to an LC nematic phase like a free system with no substrate. We argue that a three-way interplay of the energies arising from orientation-dependent particle-particle and particle-substrate interaction makes it possible for the system to undergo substrate-periodicity-dependent multiple phase transitions in the GB LC system.
Collapse
Affiliation(s)
- Bharti
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab - 147004, India.
| | - Debabrata Deb
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab - 147004, India.
| |
Collapse
|
3
|
Nanoscale Phase Separation of Incommensurate and Quasi-Commensurate Spin Stripes in Low Temperature Spin Glass of La2−xSrxNiO4. CONDENSED MATTER 2021. [DOI: 10.3390/condmat6040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While spin striped phases in La2−xSrxNiO4+y for 0.25 < x < 0.33 are the archetypal case of a 1D spin density wave (SDW) phase in doped antiferromagnetic strongly correlated perovskites, few information is available on the SDW spatial organization. In this context, we have measured the spatial variation of the wave vector of the SDW reflection profile by scanning micro X-ray diffractions with a coherent beam. We obtained evidence of a SDW order–disorder transition by lowering a high temperature phase (T > 50 K) to a low temperature phase (T < 50 K). We have identified quasi-commensurate spin stripe puddles in the ordered phase at 50 < T < 70 K, while the low temperature spin glassy phase presents a nanoscale phase separation of T = 30 K, with the coexistence of quasi-commensurate and incommensurate spin stripe puddles assigned to the interplay of quantum frustration and strong electronic correlations.
Collapse
|
4
|
Reichhardt C, Reichhardt CJO. Active matter commensuration and frustration effects on periodic substrates. Phys Rev E 2021; 103:022602. [PMID: 33735959 DOI: 10.1103/physreve.103.022602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
We show that self-driven particles coupled to a periodic obstacle array exhibit active matter commensuration effects that are absent in the Brownian limit. As the obstacle size is varied for sufficiently large activity, a series of commensuration effects appear in which the motility induced phase separation produces commensurate crystalline states, while for other obstacle sizes we find frustrated or amorphous states. The commensuration effects are associated with peaks in the amount of sixfold ordering and the maximum cluster size. When a drift force is added to the system, the mobility contains peaks and dips similar to those found in transport studies for commensuration effects in superconducting vortices and colloidal particles.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
5
|
Reichhardt C, Reichhardt CJO. Directional locking effects for active matter particles coupled to a periodic substrate. Phys Rev E 2020; 102:042616. [PMID: 33212736 DOI: 10.1103/physreve.102.042616] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Directional locking occurs when a particle moving over a periodic substrate becomes constrained to travel along certain substrate symmetry directions. Such locking effects arise for colloids and superconducting vortices moving over ordered substrates when the direction of the external drive is varied. Here we study the directional locking of run-and-tumble active matter particles interacting with a periodic array of obstacles. In the absence of an external biasing force, we find that the active particle motion locks to various symmetry directions of the substrate when the run time between tumbles is large. The number of possible locking directions depends on the array density and on the relative sizes of the particles and the obstacles. For a square array of large obstacles, the active particle only locks to the x, y, and 45^{∘} directions, while for smaller obstacles, the number of locking angles increases. Each locking angle satisfies θ=arctan(p/q), where p and q are integers, and the angle of motion can be measured using the ratio of the velocities or the velocity distributions in the x and y directions. When a biasing driving force is applied, the directional locking behavior is affected by the ratio of the self-propulsion force to the biasing force. For large biasing, the behavior resembles that found for directional locking in passive systems. For large obstacles under biased driving, a trapping behavior occurs that is nonmonotonic as a function of increasing run length or increasing self-propulsion force, and the trapping diminishes when the run length is sufficiently large.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
6
|
Libál A, Balázs T, Reichhardt C, Reichhardt CJO. Colloidal Dynamics on a Choreographic Time Crystal. PHYSICAL REVIEW LETTERS 2020; 124:208004. [PMID: 32501072 DOI: 10.1103/physrevlett.124.208004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/17/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
A choreographic time crystal is a dynamic lattice structure in which the points comprising the lattice move in a coordinated fashion. These structures were initially proposed for understanding the motion of synchronized satellite swarms. Using simulations, we examine colloids interacting with a choreographic crystal consisting of traps that could be created optically. As a function of the trap strength, speed, and colloidal filling fraction, we identify a series of phases including states where the colloids organize into a dynamic chiral loop lattice as well as a frustrated induced liquid state and a choreographic lattice state. We show that transitions between these states can be understood in terms of vertex frustration effects that occur during a certain portion of the choreographic cycle. Our results can be generalized to a broader class of systems of particles coupled to choreographic structures, such as vortices, ions, cold atoms, and soft matter systems.
Collapse
Affiliation(s)
- András Libál
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Mathematics and Computer Science Department, Babeş-Bolyai University, Cluj 400084, Romania
| | - Tünde Balázs
- Mathematics and Computer Science Department, Babeş-Bolyai University, Cluj 400084, Romania
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
7
|
McDermott D, Reichhardt CJO, Reichhardt C. Detecting depinning and nonequilibrium transitions with unsupervised machine learning. Phys Rev E 2020; 101:042101. [PMID: 32422707 DOI: 10.1103/physreve.101.042101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Using numerical simulations of a model disk system, we demonstrate that a machine learning generated order-parameter-like measure can detect depinning transitions and different dynamic flow phases in systems driven far from equilibrium. We specifically consider monodisperse passive disks with short range interactions undergoing a depinning phase transition when driven over quenched disorder. The machine learning derived order-parameter-like measure identifies the depinning transition as well as different dynamical regimes, such as the transition from a flowing liquid to a phase separated liquid-solid state that is not readily distinguished with traditional measures such as velocity-force curves or Voronoi tessellation. The order-parameter-like measure also shows markedly distinct behavior in the limit of high density where jamming effects occur. Our results should be general to the broad class of particle-based systems that exhibit depinning transitions and nonequilibrium phase transitions.
Collapse
Affiliation(s)
- D McDermott
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Department of Physics, Pacific University, Forest Grove, Oregon 97116, USA
| | - C J O Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
8
|
Rossini M, Consonni L, Stenco A, Reatto L, Manini N. Sliding states of a soft-colloid cluster crystal: Cluster versus single-particle hopping. Phys Rev E 2018; 97:052614. [PMID: 29906835 DOI: 10.1103/physreve.97.052614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 06/08/2023]
Abstract
We study a two-dimensional model for interacting colloidal particles which displays spontaneous clustering. Within this model we investigate the competition between the pinning to a periodic corrugation potential and a sideways constant pulling force which would promote a sliding state. For a few sample particle densities and amplitudes of the periodic corrugation potential we investigate the depinning from the statically pinned to the dynamically sliding regime. This sliding state exhibits the competition between a dynamics where entire clusters are pulled from a minimum to the next and a dynamics where single colloids or smaller groups leave a cluster and move across the corrugation energy barrier to join the next cluster downstream in the force direction. Both kinds of sliding states can occur either coherently across the entire sample or asynchronously: the two regimes result in different average mobilities. Finite temperature tends to destroy separate sliding regimes, generating a smoother dependence of the mobility on the driving force.
Collapse
Affiliation(s)
- Mirko Rossini
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| | - Lorenzo Consonni
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| | - Andrea Stenco
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| | - Luciano Reatto
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| | - Nicola Manini
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| |
Collapse
|
9
|
Reichhardt C, Reichhardt CJO. Velocity force curves, laning, and jamming for oppositely driven disk systems. SOFT MATTER 2018; 14:490-498. [PMID: 29214253 DOI: 10.1039/c7sm02162c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using simulations we examine a two-dimensional disk system in which two disk species are driven in opposite directions. We measure the average velocity of one of the species versus the applied driving force and identify four phases as function of drive and disk density: a jammed state, a completely phase separated state, a continuously mixing phase, and a laning phase. The transitions between these phases are correlated with jumps in the velocity-force curves that are similar to the behavior observed at dynamical phase transitions in driven particle systems with quenched disorder such as vortices in type-II superconductors. In some cases the transitions between phases are associated with negative differential mobility in which the average absolute velocity of either species decreases with increasing drive. We also consider the situation where the drive is applied to only one species as well as systems in which both species are driven in the same direction with different drive amplitudes. We show that the phases are robust against the addition of thermal fluctuations. Finally, we discuss how the transitions we observe could be related to absorbing phase transitions where a system in a phase separated or laning regime organizes to a state in which contacts between the disks no longer occur and dynamical fluctuations are lost.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | |
Collapse
|
10
|
Reichhardt C, Olson Reichhardt CJ. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:026501. [PMID: 27997373 DOI: 10.1088/1361-6633/80/2/026501] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
11
|
Gerloff S, Klapp SHL. Depinning and heterogeneous dynamics of colloidal crystal layers under shear flow. Phys Rev E 2017; 94:062605. [PMID: 28085345 DOI: 10.1103/physreve.94.062605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 11/07/2022]
Abstract
Using Brownian dynamics (BD) simulations and an analytical approach we investigate the shear-induced, nonequilibrium dynamics of dense colloidal suspensions confined to a narrow slit-pore. Focusing on situations where the colloids arrange in well-defined layers with solidlike in-plane structure, the confined films display complex, nonlinear behavior such as collective depinning and local transport via density excitations. These phenomena are reminiscent of colloidal monolayers driven over a periodic substrate potential. In order to deepen this connection, we present an effective model that maps the dynamics of the shear-driven colloidal layers to the motion of a single particle driven over an effective substrate potential. This model allows us to estimate the critical shear rate of the depinning transition based on the equilibrium configuration, revealing the impact of important parameters, such as the slit-pore width and the interaction strength. We then turn to heterogeneous systems where a layer of small colloids is sheared with respect to bottom layers of large particles. For these incommensurate systems we find that the particle transport is dominated by density excitations resembling the so-called "kink" solutions of the Frenkel-Kontorova (FK) model. In contrast to the FK model, however, the corresponding "antikinks" do not move.
Collapse
Affiliation(s)
- Sascha Gerloff
- Institut für Theoretische Physik, Hardenbergstrasse 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Hardenbergstrasse 36, Technische Universität Berlin, D-10623 Berlin, Germany
| |
Collapse
|
12
|
McDermott D, Reichhardt CJO, Reichhardt C. Avalanches, plasticity, and ordering in colloidal crystals under compression. Phys Rev E 2016; 93:062607. [PMID: 27415320 DOI: 10.1103/physreve.93.062607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 06/06/2023]
Abstract
Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.
Collapse
Affiliation(s)
- D McDermott
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Department of Physics, Wabash College, Crawfordsville, Indiana 47933, USA
| | - C J Olson Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
13
|
Haga T. Nonequilibrium quasi-long-range order of a driven random-field O(N) model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062113. [PMID: 26764638 DOI: 10.1103/physreve.92.062113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 06/05/2023]
Abstract
We investigate three-dimensional O(N) spin models driven with a uniform velocity over a random field. Within a spin-wave approximation, it is shown that in the strong driving regime the model with N=2 exhibits a quasi-long-range order in which the spatial correlation function decays in a power-law form. Furthermore, for the cases that N=2 and 3, we numerically demonstrate a nonequilibrium phase transition between the quasi-long-range order phase and the disordered phase, which turns out to resemble the Kosterlitz-Thouless transition in the two-dimensional pure XY model in equilibrium.
Collapse
Affiliation(s)
- Taiki Haga
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Hasnain J, Jungblut S, Dellago C. Dynamical phases of attractive particles sliding on a structured surface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:194122. [PMID: 25922981 DOI: 10.1088/0953-8984/27/19/194122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inspired by experiments on quartz crystal microbalance setups, we study the mobility of a monolayer of Lennard-Jones particles driven over a hexagonal external potential. We pay special attention to the changes in the dynamical phases that arise when the lattice constant of the external substrate potential and the Lennard-Jones interaction are mismatched. We find that if the average particle separation is such that the particles repel each other, or interact harmonically, the qualitative behavior of the system is akin to that of a monolayer of purely repulsive Yukawa particles. On the other hand, if the particles typically attract each other, the ensuing dynamical states are determined entirely by the relative strength of the Lennard-Jones interaction with respect to that of the external potential.
Collapse
Affiliation(s)
- J Hasnain
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria
| | | | | |
Collapse
|
15
|
Hasnain J, Jungblut S, Tröster A, Dellago C. Frictional dynamics of stiff monolayers: from nucleation dynamics to thermal sliding. NANOSCALE 2014; 6:10161-10168. [PMID: 25046037 DOI: 10.1039/c4nr01790k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The inherently nonlinear dynamics of two surfaces as they are driven past each other, a phenomenon known as dry friction, has yet to be fully understood on an atomistic level. New experiments on colloidal monolayers forced over laser-generated substrates now offer the opportunity to investigate friction with single-particle resolution. Here, we use analytical theory and computer simulations to study the effect of thermal fluctuations on the stick-slip mechanism characteristic for the frictional response of a stiff colloidal monolayer on a commensurate substrate. By performing a harmonic expansion of the energy and employing elementary statistical mechanics, we map the motion of the monolayer onto a simple differential equation. Analytical expressions derived from our approach predict a transition from nucleation dynamics, where the monolayer moves in a sequence of activated hops over energy barriers, to "thermal sliding", in which the effective substrate barrier opposing the motion of the monolayer disappears due to thermal fluctuations, leading to continuous, uninterrupted sliding motion. Furthermore, we find that the average velocity of the monolayer for large driving forces obeys a simple scaling behavior that is consistent with the existence of a static friction. For small forces, however, nucleation provides a mode of motion that leads to a small but non-vanishing mobility of the monolayer. Data obtained from simulations confirm this picture and agree quantitatively with our analytical formulae. The theory developed here holds under general conditions for sufficiently strong inter-particle repulsions and it yields specific predictions that can be tested in experiments.
Collapse
|