1
|
Ikeda T, Kobayashi Y, Yamakawa M. Structure and dynamics of amphiphilic patchy cubes in a nanoslit under shear. J Chem Phys 2024; 161:024901. [PMID: 38973760 DOI: 10.1063/5.0216550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
Patchy nanocubes are intriguing materials with simple shapes and space-filling and multidirectional bonding properties. Previous studies have revealed various mesoscopic structures such as colloidal crystals in the solid regime and rod-like or fractal-like aggregates in the liquid regime of the phase diagram. Recent studies have also shown that mesoscopic structural properties, such as an average cluster size M and orientational order, in amphiphilic nanocube suspensions are associated with macroscopic viscosity changes, mainly owing to differences in cluster shape among patch arrangements. Although many studies have been conducted on the self-assembled structures of nanocubes in bulk, little is known about their self-assembly in nanoscale spaces or structural changes under shear. In this study, we investigated mixtures of one- and two-patch amphiphilic nanocubes confined in two flat parallel plates at rest and under shear using molecular dynamics simulations coupled with multiparticle collision dynamics. We considered two different patch arrangements for the two-patch particles and two different slit widths H to determine the degree of confinement in constant volume fractions in the liquid regime of the phase diagram. We revealed two unique cluster morphologies that have not been previously observed under bulk conditions. At rest, the size of the rod-like aggregates increased with decreasing H, whereas that of the fractal-like aggregates remained constant. Under weak shear with strong confinement, the rod-like aggregates maintained a larger M than the fractal-like aggregates, which were more rigid and maintained a larger M than the rod-like aggregates under bulk conditions.
Collapse
Affiliation(s)
- Takahiro Ikeda
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yusei Kobayashi
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masashi Yamakawa
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
2
|
Baran Ł, Borówko M, Rżysko W, Smołka J. Amphiphilic Janus Particles Confined in Symmetrical and Janus-Like Slits. ACS OMEGA 2023; 8:18863-18873. [PMID: 37273616 PMCID: PMC10233691 DOI: 10.1021/acsomega.3c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
We use Monte Carlo simulations to investigate the behavior of Janus spheres composed of attractive and repulsive parts confined between two parallel solid surfaces. The slits with identical and competing walls are studied. The adsorption isotherms of Janus particles are determined, and the impact of the density in the pore on the morphology is discussed in detail. So far, this issue has not been systematically investigated. New, unique structures are observed along the isotherms, including the bilayer and three-layer structures located at different distances from the walls. We analyze how selected parameters affect the positional and orientational ordering in these layers. In some cases, the particles form highly ordered hexagonal lattices.
Collapse
Affiliation(s)
- Łukasz Baran
- Department
of Theoretical Chemistry, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Małgorzata Borówko
- Department
of Theoretical Chemistry, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Wojciech Rżysko
- Department
of Theoretical Chemistry, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Jakub Smołka
- Department
of Computer Science, Lublin University of
Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland
| |
Collapse
|
3
|
Lattice Model of Multilayer Adsorption of Particles with Orientation Dependent Interactions at Solid Surfaces. Molecules 2021; 26:molecules26185622. [PMID: 34577091 PMCID: PMC8470913 DOI: 10.3390/molecules26185622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
A simple lattice model has been used to study the formation of multilayer films by fluids with orientation-dependent interactions on solid surfaces. The particles, composed of two halves (A and B) were allowed to take on one of six different orientations. The interaction between a pair of differently oriented neighboring particles was assumed to depend on the degrees to which their A and B parts overlap. Here, we have assumed that the AA interaction was strongly attractive, the AB interaction was set to zero, while the BB interaction was varied between 0 and -1.0. The ground state properties of the model have been determined for the systems being in contact with non-selective and selective walls over the entire range of BB interaction energies between 0 and -1.0. It has been demonstrated that the structure of multilayer films depends on the strengths of surface potential felt by differently oriented particles and the interaction between the B halves of fluid particles. Finite temperature behavior has been studied by Monte Carlo simulation methods. It has been shown that the bulk phase phase diagram is qualitatively independent of the BB interaction energy, and has the swan neck shape, since the high stability of the dense ordered phase suppresses the possibility of the formation of disordered liquid-like phase. Only one class of non-uniform systems with the BB interaction set to zero has been considered. The results have been found to be consistent with the predictions stemming form the ground state considerations. In particular, we have found that a complete wetting occurs at any temperature, down to zero. Furthermore, the sequences of layering transitions, and the structure of multilayer films, have been found to be the same as observed in the ground state.
Collapse
|
4
|
Baran Ł, Borówko M, Rżysko W, Patrykiejew A. Self-assembly of Janus disks confined in a slit. J Chem Phys 2019; 151:104703. [PMID: 31521087 DOI: 10.1063/1.5117887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using Monte Carlo simulations, we investigate the self-organization of Janus disks confined in two-dimensional slits. Janus particles are modeled as circles composed of attractive and repulsive parts. We consider the slits with identical walls and slits with competing walls (the so-called Janus-like pores). We investigate how the system morphology depends on the slit width, density, and temperature. Different unique orientationally ordered structures are found. The mechanism of formation of these structures is discussed in detail. We show that the anisotropic interactions between the confined molecules, the nature of the "walls," and the slit size strongly affect the self-organization.
Collapse
Affiliation(s)
- Ł Baran
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - M Borówko
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - W Rżysko
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - A Patrykiejew
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| |
Collapse
|
5
|
Borówko M, Rżysko W, Sokołowski S, Staszewski T. Self-assembly of Janus disks induced by small molecules in two-dimensional systems. J Chem Phys 2017; 147:014904. [PMID: 28688378 DOI: 10.1063/1.4990415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- M. Borówko
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - W. Rżysko
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - S. Sokołowski
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - T. Staszewski
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| |
Collapse
|
6
|
Bordin JR, Krott LB. How Competitive Interactions Affect the Self-Assembly of Confined Janus Dumbbells. J Phys Chem B 2017; 121:4308-4317. [DOI: 10.1021/acs.jpcb.7b01696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- José Rafael Bordin
- Campus Caçapava
do Sul, Universidade Federal do Pampa, Av. Pedro Anunciação,
111, CEP 96570-000, Caçapava do Sul, RS, Brazil
| | - Leandro B. Krott
- Centro Araranguá, Universidade Federal de Santa Catarina, Rua Pedro João Pereira, 150, CEP 88905-120, Araranguá, SC, Brazil
| |
Collapse
|
7
|
Nikoubashman A. Self-assembly of colloidal micelles in microfluidic channels. SOFT MATTER 2016; 13:222-229. [PMID: 27444571 DOI: 10.1039/c6sm00766j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The self-assembly of amphiphilic Janus colloids in microfluidic channels is studied using hybrid molecular dynamics simulations with fully resolved hydrodynamic interactions incorporated through the multi-particle collision dynamics algorithm. The simulations are conducted at a density and temperature where the Janus particles spontaneously self-assemble into spherical micelles to minimize the interface between the solvophobic caps and the surrounding solvent. In confined systems, this contact area can also be reduced by aggregation at the channel walls. Indeed, a sizable fraction of free particles and small clusters with three and four members are found at the walls when the microfluidic channel is made up of a comparably solvophobic material as the Janus colloids. When the applied Poiseuille flow is sufficiently strong, the colloidal micelles break up into smaller fragments and isolated particles. However, at intermediate flow rates the shear-induced dissociation and reorganization of aggregates lead to a net growth of the micelles with a sizable amount of particles in icosahedral clusters with 13 particles. Furthermore, the parabolic velocity profile of the flow causes a highly non-uniform cluster size distribution between the channel walls, where the aggregation number decreases close to the walls.
Collapse
Affiliation(s)
- Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany.
| |
Collapse
|
8
|
McDermott D, Reichhardt CJO, Reichhardt C. Avalanches, plasticity, and ordering in colloidal crystals under compression. Phys Rev E 2016; 93:062607. [PMID: 27415320 DOI: 10.1103/physreve.93.062607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 06/06/2023]
Abstract
Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.
Collapse
Affiliation(s)
- D McDermott
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Department of Physics, Wabash College, Crawfordsville, Indiana 47933, USA
| | - C J Olson Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
9
|
Seong Y, Kang TG, Hulsen MA, den Toonder JMJ, Anderson PD. Magnetic interaction of Janus magnetic particles suspended in a viscous fluid. Phys Rev E 2016; 93:022607. [PMID: 26986377 DOI: 10.1103/physreve.93.022607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 06/05/2023]
Abstract
We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem.
Collapse
Affiliation(s)
- Yujin Seong
- School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do 412-792, Republic of Korea
| | - Tae Gon Kang
- School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do 412-792, Republic of Korea
| | - Martien A Hulsen
- Department of Mechanical Engineering, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jaap M J den Toonder
- Department of Mechanical Engineering, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Patrick D Anderson
- Department of Mechanical Engineering, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
10
|
Fernández MS, Misko VR, Peeters FM. Self-assembly of Janus particles into helices with tunable pitch. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042309. [PMID: 26565242 DOI: 10.1103/physreve.92.042309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 06/05/2023]
Abstract
Janus particles present an important class of building blocks for directional assembly. These are compartmentalized colloids with two different hemispheres. In this work we consider a three-dimensional model of Janus spheres that contain one hydrophobic and one charged hemisphere. Using molecular dynamics simulations, we study the morphology of these particles when confined in a channel-like environment. The interplay between the attractive and repulsive forces on each particle gives rise to a rich phase space where the relative orientation of each particle plays a dominant role in the formation of large-scale clusters. The interest in this system is primarily due to the fact that it could give a better understanding of the mechanisms of the formation of polar membranes. A variety of ordered membranelike morphologies is found consisting of single and multiple connected chain configurations. The helicity of these chains can be chosen by simply changing the salt concentration of the solution. Special attention is given to the formation of Bernal spirals. These helices are composed of regular tetrahedra and are known to exhibit nontrivial translational and rotational symmetry.
Collapse
Affiliation(s)
| | - V R Misko
- Departement Fysica, Universiteit Antwerpen, B-2020 Antwerpen, Belgium
| | - F M Peeters
- Departement Fysica, Universiteit Antwerpen, B-2020 Antwerpen, Belgium
| |
Collapse
|
11
|
Hossan MR, Gopmandal PP, Dillon R, Dutta P. Bipolar Janus particle assembly in microdevice. Electrophoresis 2015; 36:722-30. [DOI: 10.1002/elps.201400423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/05/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad R. Hossan
- Department of Engineering and Physics; University of Central Oklahoma; OK USA
| | - Partha P. Gopmandal
- School of Mechanical and Materials Engineering; Washington State University; Pullman WA USA
| | - Robert Dillon
- Department of Mathematics; Washington State University; Pullman WA USA
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering; Washington State University; Pullman WA USA
| |
Collapse
|