1
|
Hyperuniformity and phase enrichment in vortex and rotor assemblies. Nat Commun 2022; 13:804. [PMID: 35145099 PMCID: PMC8831603 DOI: 10.1038/s41467-022-28375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Ensembles of particles rotating in a two-dimensional fluid can exhibit chaotic dynamics yet develop signatures of hidden order. Such rotors are found in the natural world spanning vastly disparate length scales — from the rotor proteins in cellular membranes to models of atmospheric dynamics. Here we show that an initially random distribution of either driven rotors in a viscous membrane, or ideal vortices with minute perturbations, spontaneously self assemble into a distinct arrangement. Despite arising from drastically different physics, these systems share a Hamiltonian structure that sets geometrical conservation laws resulting in prominent structural states. We find that the rotationally invariant interactions isotropically suppress long-wavelength fluctuations — a hallmark of a disordered hyperuniform material. With increasing area fraction, the system orders into a hexagonal lattice. In mixtures of two co-rotating populations, the stronger population will gain order from the other and both will become phase enriched. Finally, we show that classical 2D point vortex systems arise as exact limits of the experimentally accessible microscopic membrane rotors, yielding a new system through which to study topological defects. Rotor-like dynamics is observed in many natural systems, from the rotor proteins in cellular membranes to atmospheric models. Here, the authors uncover geometrical conservation laws that limit distribution of driven rotors in a membrane or a soap film and allow to predict their structural states.
Collapse
|
2
|
Abstract
Dynamic processes on membrane surfaces are essential for biological function. Traditionally, quantitative measurements of lipid/protein motion have been interpreted in the framework of membrane hydrodynamics. However, some recent single-molecule tracking studies have proven difficult to interpret via hydrodynamic arguments. Does this suggest a failure of hydrodynamic theory or simply highlight the dangers in attempting to extend hydrodynamic arguments down to molecular scales? Intermolecular correlations are superior to single-molecule observations for studying hydrodynamics due to the longer length scales involved. The current work reports dynamic pair correlations of lipids in model membranes. Submicron distance-dependent correlations are well resolved, and complementary numerical calculations indicate that hydrodynamic theory can predict membrane dynamics over distances of tens of nanometers and longer. Lipid membranes are complex quasi–two-dimensional fluids, whose importance in biology and unique physical/materials properties have made them a major target for biophysical research. Recent single-molecule tracking experiments in membranes have caused some controversy, calling the venerable Saffman–Delbrück model into question and suggesting that, perhaps, current understanding of membrane hydrodynamics is imperfect. However, single-molecule tracking is not well suited to resolving the details of hydrodynamic flows; observations involving correlations between multiple molecules are superior for this purpose. Here dual-color molecular tracking with submillisecond time resolution and submicron spatial resolution is employed to reveal correlations in the Brownian motion of pairs of fluorescently labeled lipids in membranes. These correlations extend hundreds of nanometers in freely floating bilayers (black lipid membranes) but are severely suppressed in supported lipid bilayers. The measurements are consistent with hydrodynamic predictions based on an extended Saffman–Delbrück theory that explicitly accounts for the two-leaflet bilayer structure of lipid membranes.
Collapse
|
3
|
Abstract
The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to "cytoquakes" or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels.
Collapse
Affiliation(s)
- Daniel W Swartz
- Department of Physics and Astronomy, Johns Hopkins University, USA
- Department of Physics, Massachusetts Institute of Technology, USA
| | - Brian A Camley
- Department of Physics and Astronomy, Johns Hopkins University, USA
- Department of Biophysics, Johns Hopkins University, USA
| |
Collapse
|
4
|
Goutaland Q, Fournier JB. Saffman-Delbrück and beyond: A pointlike approach. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:156. [PMID: 31834595 DOI: 10.1140/epje/i2019-11922-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
We show that a very good analytical approximation of Saffman-Delbrück's (SD) law (mobility of a bio-membrane inclusion) can be obtained easily from the velocity field produced by a pointlike force in a 2D fluid embedded in a solvent, by using a small wavelength cutoff of the order of the particle's radius a . With this method, we obtain analytical generalizations of the SD law that take into account the bilayer nature of the membrane and the intermonolayer friction b . We also derive, in a calculation that consistently couples the quasi-planar two-dimensional (2D) membrane flow with the 3D solvent flow, the correction to the SD law arising when the inclusion creates a local spontaneous curvature. For an inclusion spanning a flat bilayer, the SD law is found to hold simply upon replacing the 2D viscosity [Formula: see text] of the membrane by the sum of the monolayer viscosities, without influence of b as long as b is above a threshold in practice well below known experimental values. For an inclusion located in only one of the two monolayers (or adhering to one monolayer), the SD law is influenced by b when b < [Formula: see text]/(4a2) . In this case, the mobility can be increased by up to a factor of two, as the opposite monolayer is not fully dragged by the inclusion. For an inclusion creating a local spontaneous curvature, we show that the total friction is the sum of the SD friction and that due to the pull-back created by the membrane deformation, a point that was assumed without demonstration in the literature.
Collapse
Affiliation(s)
- Quentin Goutaland
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université de Paris, 75205, Paris Cedex 13, France
| | - Jean-Baptiste Fournier
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université de Paris, 75205, Paris Cedex 13, France.
| |
Collapse
|
5
|
Otosu T, Yamaguchi S. Quantifying the Diffusion of Lipids in the Proximal/Distal Leaflets of a Supported Lipid Bilayer by Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. J Phys Chem B 2018; 122:10315-10319. [DOI: 10.1021/acs.jpcb.8b08614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
6
|
Hosaka Y, Yasuda K, Okamoto R, Komura S. Lateral diffusion induced by active proteins in a biomembrane. Phys Rev E 2017; 95:052407. [PMID: 28618510 DOI: 10.1103/physreve.95.052407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 06/07/2023]
Abstract
We discuss the hydrodynamic collective effects due to active protein molecules that are immersed in lipid bilayer membranes and modeled as stochastic force dipoles. We specifically take into account the presence of the bulk solvent that surrounds the two-dimensional fluid membrane. Two membrane geometries are considered: the free membrane case and the confined membrane case. Using the generalized membrane mobility tensors, we estimate the active diffusion coefficient and the drift velocity as a function of the size of a diffusing object. The hydrodynamic screening lengths distinguish the two asymptotic regimes of these quantities. Furthermore, the competition between the thermal and nonthermal contributions in the total diffusion coefficient is characterized by two length scales corresponding to the two membrane geometries. These characteristic lengths describe the crossover between different asymptotic behaviors when they are larger than the hydrodynamic screening lengths.
Collapse
Affiliation(s)
- Yuto Hosaka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kento Yasuda
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ryuichi Okamoto
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
7
|
Camley BA, Lerner MG, Pastor RW, Brown FLH. Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes. J Chem Phys 2016; 143:243113. [PMID: 26723598 DOI: 10.1063/1.4932980] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Saffman-Delbrück hydrodynamic model for lipid-bilayer membranes is modified to account for the periodic boundary conditions commonly imposed in molecular simulations. Predicted lateral diffusion coefficients for membrane-embedded solid bodies are sensitive to box shape and converge slowly to the limit of infinite box size, raising serious doubts for the prospects of using detailed simulations to accurately predict membrane-protein diffusivities and related transport properties. Estimates for the relative error associated with periodic boundary artifacts are 50% and higher for fully atomistic models in currently feasible simulation boxes. MARTINI simulations of LacY membrane protein diffusion and LacY dimer diffusion in DPPC membranes and lipid diffusion in pure DPPC bilayers support the underlying hydrodynamic model.
Collapse
Affiliation(s)
- Brian A Camley
- Center for Theoretical Biological Physics and Department of Physics, University of California, San Diego, California 92093, USA
| | - Michael G Lerner
- Department of Physics and Astronomy, Earlham College, Richmond, Indiana 47374, USA
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Frank L H Brown
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
8
|
Blosser MC, Honerkamp-Smith AR, Han T, Haataja M, Keller SL. Transbilayer Colocalization of Lipid Domains Explained via Measurement of Strong Coupling Parameters. Biophys J 2016; 109:2317-27. [PMID: 26636943 DOI: 10.1016/j.bpj.2015.10.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 01/03/2023] Open
Abstract
When micron-scale compositional heterogeneity develops in membranes, the distribution of lipids on one face of the membrane strongly affects the distribution on the other. Specifically, when lipid membranes phase separate into coexisting liquid phases, domains in each monolayer leaflet of the membrane are colocalized with domains in the opposite leaflet. Colocalized domains have never been observed to spontaneously move out of registry. This result indicates that the lipid compositions in one leaflet are strongly coupled to compositions in the opposing leaflet. Predictions of the interleaflet coupling parameter, Λ, vary by a factor of 50. We measure the value of Λ by applying high shear forces to supported lipid bilayers. This causes the upper leaflet to slide over the lower leaflet, moving domains out of registry. We find that the threshold shear stress required to deregister domains in the upper and lower leaflets increases with the inverse length of domains. We derive a simple, closed-form expression relating the threshold shear to Λ, and find Λ = 0.016 ± 0.004 kBT/nm2.
Collapse
Affiliation(s)
- Matthew C Blosser
- Departments of Chemistry and Physics, University of Washington, Seattle, Washington
| | - Aurelia R Honerkamp-Smith
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Tao Han
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - Mikko Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - Sarah L Keller
- Departments of Chemistry and Physics, University of Washington, Seattle, Washington.
| |
Collapse
|
9
|
Poger D, Caron B, Mark AE. Validating lipid force fields against experimental data: Progress, challenges and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1556-65. [DOI: 10.1016/j.bbamem.2016.01.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/07/2016] [Accepted: 01/27/2016] [Indexed: 01/16/2023]
|
10
|
Noruzifar E, Camley BA, Brown FLH. Calculating hydrodynamic interactions for membrane-embedded objects. J Chem Phys 2015; 141:124711. [PMID: 25273465 DOI: 10.1063/1.4896180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A recently introduced numerical scheme for calculating self-diffusion coefficients of solid objects embedded in lipid bilayer membranes is extended to enable calculation of hydrodynamic interactions between multiple objects. The method is used to validate recent analytical predictions by Oppenheimer and Diamant [Biophys. J. 96, 3041 2009] related to the coupled diffusion of membrane embedded proteins and is shown to converge to known near-field lubrication results as objects closely approach one another; however, the present methodology also applies outside of the limiting regimes where analytical results are available. Multiple different examples involving pairs of disk-like objects with various constraints imposed on their relative motions demonstrate the importance of hydrodynamic interactions in the dynamics of proteins and lipid domains on membrane surfaces. It is demonstrated that the relative change in self-diffusion of a membrane embedded object upon perturbation by a similar proximal solid object displays a maximum for object sizes comparable to the Saffman-Delbrück length of the membrane.
Collapse
Affiliation(s)
- Ehsan Noruzifar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, USA
| | - Brian A Camley
- Center for Theoretical Biological Physics and Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Frank L H Brown
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, USA
| |
Collapse
|
11
|
Wang CY, Hill RJ. Transmembrane protein diffusion in gel-supported dual-leaflet membranes. Biophys J 2014; 107:2296-304. [PMID: 25418298 DOI: 10.1016/j.bpj.2014.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/09/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022] Open
Abstract
Tools to measure transmembrane-protein diffusion in lipid bilayer membranes have advanced in recent decades, providing a need for predictive theoretical models that account for interleaflet leaflet friction on tracer mobility. Here we address the fully three-dimensional flows driven by a (nonprotruding) transmembrane protein embedded in a dual-leaflet membrane that is supported above and below by soft porous supports (e.g., hydrogel or extracellular matrix), each of which has a prescribed permeability and solvent viscosity. For asymmetric configurations, i.e., supports with contrasting permeability, as realized for cells in contact with hydrogel scaffolds or culture media, the diffusion coefficient can reflect interleaflet friction. Reasonable approximations, for sufficiently large tracers on low-permeability supports, are furnished by a recent phenomenological theory from the literature. Interpreting literature data, albeit for hard-supported membranes, provides a theoretical basis for the phenomenological Stokes drag law as well as strengthening assertions that nonhydrodynamic interactions are important in supported bilayer systems, possibly leading to overestimates of the membrane/leaflet viscosity. Our theory provides a theoretical foundation for future experimental studies of tracer diffusion in gel-supported membranes.
Collapse
Affiliation(s)
- Chih-Ying Wang
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | - Reghan J Hill
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|