• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698277)   Today's Articles (450)
For: Yoshida H, Kobayashi T, Hayashi H, Kinjo T, Washizu H, Fukuzawa K. Boundary condition at a two-phase interface in the lattice Boltzmann method for the convection-diffusion equation. Phys Rev E Stat Nonlin Soft Matter Phys 2014;90:013303. [PMID: 25122406 DOI: 10.1103/physreve.90.013303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Indexed: 06/03/2023]
Number Cited by Other Article(s)
1
Chen B, Zhan C, Chai Z, Shi B. Phase-field-based lattice Boltzmann method for two-phase flows with interfacial mass or heat transfer. Phys Rev E 2024;110:015307. [PMID: 39160996 DOI: 10.1103/physreve.110.015307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 08/21/2024]
2
Tolia K, Polasanapalli SRG, Anupindi K. Off-lattice Boltzmann simulation of conjugate heat transfer for natural convection in two-dimensional cavities. Phys Rev E 2024;109:015101. [PMID: 38366457 DOI: 10.1103/physreve.109.015101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/29/2023] [Indexed: 02/18/2024]
3
Yang JY, Dai XY, Xu QH, Liu ZY, Shi L. Comparative investigation of a lattice Boltzmann boundary treatment of multiphase mass transport with heterogeneous chemical reactions. Phys Rev E 2022;105:055302. [PMID: 35706296 DOI: 10.1103/physreve.105.055302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
4
Lu JH, Lei HY, Dai CS. Analysis of the typical unified lattice Boltzmann models and a comprehensive multiphase model for convection-diffusion problems in multiphase systems. Phys Rev E 2019;100:013307. [PMID: 31499910 DOI: 10.1103/physreve.100.013307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Indexed: 11/07/2022]
5
Analysis of Henry’s law and a unified lattice Boltzmann equation for conjugate mass transfer problem. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
6
Karani H, Huber C. Role of thermal disequilibrium on natural convection in porous media: Insights from pore-scale study. Phys Rev E 2017;95:033123. [PMID: 28415368 DOI: 10.1103/physreve.95.033123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 11/07/2022]
7
Ginzburg I. Prediction of the moments in advection-diffusion lattice Boltzmann method. I. Truncation dispersion, skewness, and kurtosis. Phys Rev E 2017;95:013304. [PMID: 28208379 DOI: 10.1103/physreve.95.013304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 06/06/2023]
8
Li L, AuYeung N, Mei R, Klausner JF. Effects of tangential-type boundary condition discontinuities on the accuracy of the lattice Boltzmann method for heat and mass transfer. Phys Rev E 2016;94:023307. [PMID: 27627412 DOI: 10.1103/physreve.94.023307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 06/06/2023]
9
Pareschi G, Frapolli N, Chikatamarla SS, Karlin IV. Conjugate heat transfer with the entropic lattice Boltzmann method. Phys Rev E 2016;94:013305. [PMID: 27575234 DOI: 10.1103/physreve.94.013305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 06/06/2023]
10
Hu Z, Huang J, Yong WA. Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions. Phys Rev E 2016;93:043320. [PMID: 27176441 DOI: 10.1103/physreve.93.043320] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Indexed: 11/07/2022]
11
Le G, Oulaid O, Zhang J. Counter-extrapolation method for conjugate interfaces in computational heat and mass transfer. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015;91:033306. [PMID: 25871245 DOI: 10.1103/physreve.91.033306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 06/04/2023]
12
Ginzburg I, Silva G, Talon L. Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015;91:023307. [PMID: 25768636 DOI: 10.1103/physreve.91.023307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 06/04/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA