1
|
Coumarin Schiff base-esters liquid crystals with symmetrical and unsymmetrical alkoxy chains: Synthesis, mesomorphic properties and DFT approach. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Kowaguchi A, Brumby PE, Yasuoka K. Phase Transitions and Hysteresis for a Simple Model Liquid Crystal by Replica-Exchange Monte Carlo Simulations. Molecules 2021; 26:1421. [PMID: 33808039 PMCID: PMC7961897 DOI: 10.3390/molecules26051421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, the advantages of applying the temperature and pressure replica-exchange method to investigate the phase transitions and the hysteresis for liquid-crystal fluids were demonstrated. In applying this method to the commonly used Hess-Su liquid-crystal model, heat capacity peaks and points of phase co-existence were observed. The absence of a smectic phase at higher densities and a narrow range of the nematic phase were reported. The identity of the crystalline phase of this system was found to a hexagonal close-packed solid. Since the nematic-solid phase transition is strongly first order, care must be taken when using this model not to inadvertently simulate meta-stable nematic states at higher densities. In further analysis, the Weighted Histogram Analysis Method was applied to verify the precise locations of the phase transition points.
Collapse
Affiliation(s)
| | - Paul E. Brumby
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan;
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan;
| |
Collapse
|
3
|
Nozawa T, Brumby PE, Ayuba S, Yasuoka K. Ordering in clusters of uniaxial anisotropic particles during homogeneous nucleation and growth. J Chem Phys 2019; 150:054903. [PMID: 30736692 DOI: 10.1063/1.5064410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Takuma Nozawa
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Paul E. Brumby
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Sho Ayuba
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
4
|
Schoen M, Haslam AJ, Jackson G. Perturbation Theory versus Thermodynamic Integration. Beyond a Mean-Field Treatment of Pair Correlations in a Nematic Model Liquid Crystal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11345-11365. [PMID: 28772076 DOI: 10.1021/acs.langmuir.7b01849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The phase behavior and structure of a simple square-well bulk fluid with anisotropic interactions is described in detail. The orientation dependence of the intermolecular interactions allows for the formation of a nematic liquid-crystalline phase in addition to the more conventional isotropic gas and liquid phases. A version of classical density functional theory (DFT) is employed to determine the properties of the model, and comparisons are made with the corresponding data from Monte Carlo (MC) computer simulations in both the grand canonical and canonical ensembles, providing a benchmark to assess the adequacy of the DFT results. A novel element of the DFT approach is the assumption that the structure of the fluid is dominated by intermolecular interactions in the isotropic fluid. A so-called augmented modified mean-field (AMMF) approximation is employed accounting for the influence of anisotropic interactions. The AMMF approximation becomes exact in the limit of vanishing density. We discuss advantages and disadvantages of the AMMF approximation with respect to an accurate description of isotropic and nematic branches of the phase diagram, the degree of orientational order, and orientation-dependent pair correlations. The performance of the AMMF approximations is found to be good in comparison with the MC data; the AMMF approximation has clear advantages with respect to an accurate and more detailed description of the fluid structure. Possible strategies to improve the DFT are discussed.
Collapse
Affiliation(s)
- Martin Schoen
- Department of Chemical Engineering, Imperial College London , South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Andrew J Haslam
- Department of Chemical Engineering, Imperial College London , South Kensington Campus, London SW7 2AZ, United Kingdom
| | - George Jackson
- Department of Chemical Engineering, Imperial College London , South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Püschel-Schlotthauer S, Meiwes Turrión V, Hall CK, Mazza MG, Schoen M. The Impact of Colloidal Surface-Anchoring on the Smectic A Phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2222-2234. [PMID: 28165243 DOI: 10.1021/acs.langmuir.6b03941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Liquid-crystalline phases are known for their unique properties, i.e., the combination of fluidity and long-range orientational and/or positional order. The presence of a colloidal particle gives rise to perturbations of this order locally. These perturbations are the origin of intercolloidal forces driving the colloidal self-assembly in a directed manner. Hence, the understanding of these perturbations is the first step in understanding and controlling the self-assembly process. Here, we perform Monte Carlo simulations to investigate the perturbations of orientational and positional order in a smectic A phase caused by a spherical colloid. We model the host phase via an interaction potential that reproduces characteristic features of phase behavior, structure, dynamics, and elasticity [S. Püschel-Schlotthauer et al. J. Chem. Phys. 2016, 145, 164903]. For strong homeotropic anchoring conditions, we find a Saturn ring defect and an onion structure in the smectic A phase; the latter has never been reported for colloids so far. For strong planar anchoring conditions, we find Boojum defects that become elongated at low temperature, similar to what is observed in experiments. However, for weak planar anchoring conditions, a double surface ring defect is exhibited in the smectic A phase.
Collapse
Affiliation(s)
- Sergej Püschel-Schlotthauer
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin , Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Victor Meiwes Turrión
- Max Planck Institute for Dynamics and Self-Organization (MPIDS) , Am Faßberg 17, 37077 Göttingen, Germany
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Engineering Building I, Box 7905, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization (MPIDS) , Am Faßberg 17, 37077 Göttingen, Germany
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin , Straße des 17. Juni 135, 10623 Berlin, Germany
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Engineering Building I, Box 7905, 911 Partners Way, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Püschel-Schlotthauer S, Meiwes Turrión V, Stieger T, Grotjahn R, Hall CK, Mazza MG, Schoen M. A novel model for smectic liquid crystals: Elastic anisotropy and response to a steady-state flow. J Chem Phys 2016; 145:164903. [PMID: 27802618 DOI: 10.1063/1.4965711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
By means of a combination of equilibrium Monte Carlo and molecular dynamics simulations and nonequilibrium molecular dynamics we investigate the ordered, uniaxial phases (i.e., nematic and smectic A) of a model liquid crystal. We characterize equilibrium behavior through their diffusive behavior and elastic properties. As one approaches the equilibrium isotropic-nematic phase transition, diffusion becomes anisotropic in that self-diffusion D⊥ in the direction orthogonal to a molecule's long axis is more hindered than self-diffusion D∥ in the direction parallel to that axis. Close to nematic-smectic A phase transition the opposite is true, D∥ < D⊥. The Frank elastic constants K1, K2, and K3 for the respective splay, twist, and bend deformations of the director field n̂ are no longer equal and exhibit a temperature dependence observed experimentally for cyanobiphenyls. Under nonequilibrium conditions, a pressure gradient applied to the smectic A phase generates Poiseuille-like or plug flow depending on whether the convective velocity is parallel or orthogonal to the plane of smectic layers. We find that in Poiseuille-like flow the viscosity of the smectic A phase is higher than in plug flow. This can be rationalized via the velocity-field component in the direction of the flow. In a sufficiently strong flow these smectic layers are not destroyed but significantly bent.
Collapse
Affiliation(s)
- Sergej Püschel-Schlotthauer
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Victor Meiwes Turrión
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Tillmann Stieger
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Robin Grotjahn
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, Engineering Building I, Box 7905, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, USA
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
7
|
Cattes SM, Gubbins KE, Schoen M. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring. J Chem Phys 2016; 144:194704. [PMID: 27208962 DOI: 10.1063/1.4949330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.
Collapse
Affiliation(s)
- Stefanie M Cattes
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Keith E Gubbins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building I, Box 7905, 911 Partners Way, Raleigh, North Carolina 27695, USA
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
8
|
Püschel-Schlotthauer S, Stieger T, Melle M, Mazza MG, Schoen M. Coarse-grained treatment of the self-assembly of colloids suspended in a nematic host phase. SOFT MATTER 2016; 12:469-480. [PMID: 26477506 DOI: 10.1039/c5sm01860a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The complex interplay of molecular scale effects, nonlinearities in the orientational field and long-range elastic forces makes liquid-crystal physics very challenging. A consistent way to extract information from the microscopic, molecular scale up to the meso- and macroscopic scale is still missing. Here, we develop a hybrid procedure that bridges this gap by combining extensive Monte Carlo (MC) simulations, a local Landau-de Gennes theory, classical density functional theory, and finite-size scaling theory. As a test case to demonstrate the power and validity of our novel approach we study the effective interaction among colloids with Boojum defect topology immersed in a nematic liquid crystal. In particular, at sufficiently small separations colloids attract each other if the angle between their center-of-mass distance vector and the far-field nematic director is about 30°. Using the effective potential in coarse-grained two-dimensional MC simulations we show that self-assembled structures formed by the colloids are in excellent agreement with experimental data.
Collapse
Affiliation(s)
- Sergej Püschel-Schlotthauer
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | | | | | | |
Collapse
|
9
|
Stieger T, Püschel-Schlotthauer S, Schoen M, Mazza MG. Flow-induced deformation of closed disclination lines near a spherical colloid immersed in a nematic host phase. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1096973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tillmann Stieger
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 115, 10623, Berlin, Germany
| | - Sergej Püschel-Schlotthauer
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 115, 10623, Berlin, Germany
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Marco G. Mazza
- Max-Planck-Institut für Dynamik und Selbstorganisation, Am Faßberg 17, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Schlotthauer S, Skutnik RA, Stieger T, Schoen M. Defect topologies in chiral liquid crystals confined to mesoscopic channels. J Chem Phys 2015; 142:194704. [DOI: 10.1063/1.4920979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sergej Schlotthauer
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, Berlin 10623, Germany
| | - Robert A. Skutnik
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, Berlin 10623, Germany
| | - Tillmann Stieger
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, Berlin 10623, Germany
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, Berlin 10623, Germany
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, USA
| |
Collapse
|
11
|
Cattes SM, Klapp SHL, Schoen M. Condensation, demixing, and orientational ordering of magnetic colloidal suspensions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052127. [PMID: 26066139 DOI: 10.1103/physreve.91.052127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 06/04/2023]
Abstract
In this work we study the phase behavior of magnetic particles suspended in a simple nonmagnetic solvent. Magnetic particles are modelled as spherical particles carrying a three-dimensional, classical Heisenberg spin, whereas solvent molecules are treated as spherically symmetric Lennard-Jones particles. The binary mixture of magnetic particles and solvent is studied within the framework of classical density functional theory (DFT). Within DFT pair correlations are treated at the modified mean-field level at which they are approximated by orientation dependent Mayer f functions. In the absence of an external magnetic field four generic types of phase diagrams are observed depending on the concentration of magnetic particles. In this case we observe liquid-liquid phase coexistence between an orientationally ordered (polarized) and a disordered phase characterized by slightly different concentrations of magnetic particles. Liquid-liquid phase coexistence is suppressed by an external field and vanishes completely if the strength of the field is sufficiently large.
Collapse
Affiliation(s)
- Stefanie M Cattes
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
- Department of Chemical and Biomolecular Engineering, Engineering Building I, Box 7905, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, USA
| |
Collapse
|