1
|
Wang K, Yang L, Zhou S, Lin W. Desynchronizing oscillators coupled in multi-cluster networks through adaptively controlling partial networks. CHAOS (WOODBURY, N.Y.) 2023; 33:091101. [PMID: 37676113 DOI: 10.1063/5.0167555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
This article introduces an adaptive control scheme with a feedback delay, specifically designed for controlling partial networks, to achieve desynchronization in a coupled network with two or multiple clusters. The proposed scheme's effectiveness is validated through several representative examples of coupled neuronal networks with two interconnected clusters. The efficacy of this scheme is attributed to the rigorous and numerical analyses on the corresponding transcendental characteristic equation, which includes time delay and other network parameters. In addition to investigating the impact of time delay and inter-connectivity on the stability of an incoherent state, we also rigorously find that controlling only one cluster cannot realize the desynchronization in the coupled oscillators within three or more clusters. All these, we believe, can deepen the understanding of the deep brain stimulation techniques presently used in the clinical treatment of neurodegenerative diseases and suggest future avenues for enhancing these clinical techniques through adaptive feedback settings.
Collapse
Affiliation(s)
- Kaidian Wang
- School of Mathematical Sciences, Shandong University, Jinan, Shandong 250100, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Luan Yang
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Shijie Zhou
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wei Lin
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
- School of Mathematical Sciences, LMNS, and SCMS, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Madadi Asl M, Valizadeh A, Tass PA. Decoupling of interacting neuronal populations by time-shifted stimulation through spike-timing-dependent plasticity. PLoS Comput Biol 2023; 19:e1010853. [PMID: 36724144 PMCID: PMC9891531 DOI: 10.1371/journal.pcbi.1010853] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023] Open
Abstract
The synaptic organization of the brain is constantly modified by activity-dependent synaptic plasticity. In several neurological disorders, abnormal neuronal activity and pathological synaptic connectivity may significantly impair normal brain function. Reorganization of neuronal circuits by therapeutic stimulation has the potential to restore normal brain dynamics. Increasing evidence suggests that the temporal stimulation pattern crucially determines the long-lasting therapeutic effects of stimulation. Here, we tested whether a specific pattern of brain stimulation can enable the suppression of pathologically strong inter-population synaptic connectivity through spike-timing-dependent plasticity (STDP). More specifically, we tested how introducing a time shift between stimuli delivered to two interacting populations of neurons can effectively decouple them. To that end, we first used a tractable model, i.e., two bidirectionally coupled leaky integrate-and-fire (LIF) neurons, to theoretically analyze the optimal range of stimulation frequency and time shift for decoupling. We then extended our results to two reciprocally connected neuronal populations (modules) where inter-population delayed connections were modified by STDP. As predicted by the theoretical results, appropriately time-shifted stimulation causes a decoupling of the two-module system through STDP, i.e., by unlearning pathologically strong synaptic interactions between the two populations. Based on the overall topology of the connections, the decoupling of the two modules, in turn, causes a desynchronization of the populations that outlasts the cessation of stimulation. Decoupling effects of the time-shifted stimulation can be realized by time-shifted burst stimulation as well as time-shifted continuous simulation. Our results provide insight into the further optimization of a variety of multichannel stimulation protocols aiming at a therapeutic reshaping of diseased brain networks.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
3
|
Pyragas K, Fedaravičius AP, Pyragienė T. Suppression of synchronous spiking in two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons. Phys Rev E 2021; 104:014203. [PMID: 34412351 DOI: 10.1103/physreve.104.014203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 01/28/2023]
Abstract
Collective oscillations and their suppression by external stimulation are analyzed in a large-scale neural network consisting of two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons. In the limit of an infinite number of neurons, the microscopic model of this network can be reduced to an exact low-dimensional system of mean-field equations. Bifurcation analysis of these equations reveals three different dynamic modes in a free network: a stable resting state, a stable limit cycle, and bistability with a coexisting resting state and a limit cycle. We show that in the limit cycle mode, high-frequency stimulation of an inhibitory population can stabilize an unstable resting state and effectively suppress collective oscillations. We also show that in the bistable mode, the dynamics of the network can be switched from a stable limit cycle to a stable resting state by applying an inhibitory pulse to the excitatory population. The results obtained from the mean-field equations are confirmed by numerical simulation of the microscopic model.
Collapse
Affiliation(s)
- Kestutis Pyragas
- Department of Fundamental Research, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Augustinas P Fedaravičius
- Department of Fundamental Research, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Tatjana Pyragienė
- Department of Fundamental Research, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Ozawa A, Kori H. Feedback-induced desynchronization and oscillation quenching in a population of globally coupled oscillators. Phys Rev E 2021; 103:062217. [PMID: 34271639 DOI: 10.1103/physreve.103.062217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/20/2021] [Indexed: 11/07/2022]
Abstract
Motivated from a wide range of applications, various methods to control synchronization in coupled oscillators have been proposed. Previous studies have demonstrated that global feedback typically induces three macroscopic behaviors: synchronization, desynchronization, and oscillation quenching. However, analyzing all of these transitions within a single theoretical framework is difficult, and thus the feedback effect is only partially understood in each framework. Herein, we analyze a model of globally coupled phase oscillators exposed to global feedback, which shows all of the typical macroscopic dynamical states. Analytical tractability of the model enables us to obtain detailed phase diagrams where transitions and bistabilities between different macroscopic states are identified. Additionally, we propose strategies to steer the oscillators into targeted states with minimal feedback strength. Our study provides a useful overview of the effect of global feedback and is expected to serve as a benchmark when more sophisticated feedback needs to be designed.
Collapse
Affiliation(s)
- Ayumi Ozawa
- Department of Complexity Science and Engineering, The University of Tokyo, Chiba 277-8561, Japan
| | - Hiroshi Kori
- Department of Complexity Science and Engineering, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
5
|
Zhou S, Lin W. Eliminating synchronization of coupled neurons adaptively by using feedback coupling with heterogeneous delays. CHAOS (WOODBURY, N.Y.) 2021; 31:023114. [PMID: 33653064 DOI: 10.1063/5.0035327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we present an adaptive scheme involving heterogeneous delay interactions to suppress synchronization in a large population of oscillators. We analytically investigate the incoherent state stability regions for several specific kinds of distributions for delays. Interestingly, we find that, among the distributions that we discuss, the exponential distribution may offer great convenience to the performance of our adaptive scheme because this distribution renders an unbounded stability region. Moreover, we demonstrate our scheme in the realization of synchronization elimination in some representative, realistic neuronal networks, which makes it possible to deepen the understanding and even refine the existing techniques of deep brain stimulation in the treatment of some synchronization-induced mental disorders.
Collapse
Affiliation(s)
- Shijie Zhou
- School of Mathematical Sciences, LMNS and SCMS, Fudan University, Shanghai 200433, China
| | - Wei Lin
- School of Mathematical Sciences, LMNS and SCMS, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Omel'chenko OE. Nonstationary coherence-incoherence patterns in nonlocally coupled heterogeneous phase oscillators. CHAOS (WOODBURY, N.Y.) 2020; 30:043103. [PMID: 32357679 DOI: 10.1063/1.5145259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
We consider a large ring of nonlocally coupled phase oscillators and show that apart from stationary chimera states, this system also supports nonstationary coherence-incoherence patterns (CIPs). For identical oscillators, these CIPs behave as breathing chimera states and are found in a relatively small parameter region only. It turns out that the stability region of these states enlarges dramatically if a certain amount of spatially uniform heterogeneity (e.g., Lorentzian distribution of natural frequencies) is introduced in the system. In this case, nonstationary CIPs can be studied as stable quasiperiodic solutions of a corresponding mean-field equation, formally describing the infinite system limit. Carrying out direct numerical simulations of the mean-field equation, we find different types of nonstationary CIPs with pulsing and/or alternating chimera-like behavior. Moreover, we reveal a complex bifurcation scenario underlying the transformation of these CIPs into each other. These theoretical predictions are confirmed by numerical simulations of the original coupled oscillator system.
Collapse
Affiliation(s)
- Oleh E Omel'chenko
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Tamaševičius A, Bumelienė S, Adomaitienė E. Stabilization of steady states in an array of all-to-all coupled oscillators. Phys Rev E 2019; 99:042217. [PMID: 31108634 DOI: 10.1103/physreve.99.042217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Indexed: 11/07/2022]
Abstract
An array of globally all-to-all coupled FitzHugh-Nagumo-type oscillators is considered. We suggest an adaptive first-order stable filter control feedback technique to stabilize the steady states of the oscillators. The overall system includes separate networks of coupling and control. Therefore, the controller does not depend on the intrinsic parameters of coupling between the oscillators. We have investigated stabilization of the steady states in an array of nonidentical oscillators analytically, numerically, and experimentally.
Collapse
Affiliation(s)
- Arūnas Tamaševičius
- Center for Physical Sciences and Technology, 3 Saulėtekio ave., Vilnius LT-10257, Lithuania
| | - Skaidra Bumelienė
- Center for Physical Sciences and Technology, 3 Saulėtekio ave., Vilnius LT-10257, Lithuania
| | - Elena Adomaitienė
- Center for Physical Sciences and Technology, 3 Saulėtekio ave., Vilnius LT-10257, Lithuania
| |
Collapse
|
8
|
Popovych OV, Tass PA. Multisite Delayed Feedback for Electrical Brain Stimulation. Front Physiol 2018; 9:46. [PMID: 29449814 PMCID: PMC5799832 DOI: 10.3389/fphys.2018.00046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Demand-controlled deep brain stimulation (DBS) appears to be a promising approach for the treatment of Parkinson's disease (PD) as revealed by computational, pre-clinical and clinical studies. Stimulation delivery is adapted to brain activity, for example, to the amount of neuronal activity considered to be abnormal. Such a closed-loop stimulation setup might help to reduce the amount of stimulation current, thereby maintaining therapeutic efficacy. In the context of the development of stimulation techniques that aim to restore desynchronized neuronal activity on a long-term basis, specific closed-loop stimulation protocols were designed computationally. These feedback techniques, e.g., pulsatile linear delayed feedback (LDF) or pulsatile nonlinear delayed feedback (NDF), were computationally developed to counteract abnormal neuronal synchronization characteristic for PD and other neurological disorders. By design, these techniques are intrinsically demand-controlled methods, where the amplitude of the stimulation signal is reduced when the desired desynchronized regime is reached. We here introduce a novel demand-controlled stimulation method, pulsatile multisite linear delayed feedback (MLDF), by employing MLDF to modulate the pulse amplitude of high-frequency (HF) DBS, in this way aiming at a specific, MLDF-related desynchronizing impact, while maintaining safety requirements with the charge-balanced HF DBS. Previously, MLDF was computationally developed for the control of spatio-temporal synchronized patterns and cluster states in neuronal populations. Here, in a physiologically motivated model network comprising neurons from subthalamic nucleus (STN) and external globus pallidus (GPe), we compare pulsatile MLDF to pulsatile LDF for the case where the smooth feedback signals are used to modulate the amplitude of charge-balanced HF DBS and suggest a modification of pulsatile MLDF which enables a pronounced desynchronizing impact. Our results may contribute to further clinical development of closed-loop DBS techniques.
Collapse
Affiliation(s)
- Oleksandr V Popovych
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Popovych OV, Lysyansky B, Tass PA. Closed-loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases. Sci Rep 2017; 7:1033. [PMID: 28432303 PMCID: PMC5430852 DOI: 10.1038/s41598-017-01067-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/27/2017] [Indexed: 01/15/2023] Open
Abstract
Computationally it was shown that desynchronizing delayed feedback stimulation methods are effective closed-loop techniques for the control of synchronization in ensembles of interacting oscillators. We here computationally design stimulation signals for electrical stimulation of neuronal tissue that preserve the desynchronizing delayed feedback characteristics and comply with mandatory charge deposit-related safety requirements. For this, the amplitude of the high-frequency (HF) train of biphasic charge-balanced pulses used by the standard HF deep brain stimulation (DBS) is modulated by the smooth feedback signals. In this way we combine the desynchronizing delayed feedback approach with the HF DBS technique. We show that such a pulsatile delayed feedback stimulation can effectively and robustly desynchronize a network of model neurons comprising subthalamic nucleus and globus pallidus external and suggest this approach for desynchronizing closed-loop DBS. Intriguingly, an interphase gap introduced between the recharging phases of the charge-balanced biphasic pulses can significantly improve the stimulation-induced desynchronization and reduce the amount of the administered stimulation. In view of the recent experimental and clinical studies indicating a superiority of the closed-loop DBS to open-loop HF DBS, our results may contribute to a further development of effective stimulation methods for the treatment of neurological disorders characterized by abnormal neuronal synchronization.
Collapse
Affiliation(s)
- Oleksandr V Popovych
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany.
| | - Borys Lysyansky
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany
| | - Peter A Tass
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany.,Department of Neurosurgery, Stanford University, Stanford, California, USA.,Department of Neuromodulation, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Popovych OV, Lysyansky B, Rosenblum M, Pikovsky A, Tass PA. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation. PLoS One 2017; 12:e0173363. [PMID: 28273176 PMCID: PMC5342235 DOI: 10.1371/journal.pone.0173363] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/20/2017] [Indexed: 01/19/2023] Open
Abstract
High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS.
Collapse
Affiliation(s)
- Oleksandr V. Popovych
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany
- * E-mail:
| | - Borys Lysyansky
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany
| | - Michael Rosenblum
- Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
| | - Arkady Pikovsky
- Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
| | - Peter A. Tass
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
- Department of Neuromodulation, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Kang Q, Huang B, Zhou M. Dynamic Behavior of Artificial Hodgkin-Huxley Neuron Model Subject to Additive Noise. IEEE TRANSACTIONS ON CYBERNETICS 2016; 46:2083-2093. [PMID: 26292356 DOI: 10.1109/tcyb.2015.2464106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Motivated by neuroscience discoveries during the last few years, many studies consider pulse-coupled neural networks with spike-timing as an essential component in information processing by the brain. There also exists some technical challenges while simulating the networks of artificial spiking neurons. The existing studies use a Hodgkin-Huxley (H-H) model to describe spiking dynamics and neuro-computational properties of each neuron. But they fail to address the effect of specific non-Gaussian noise on an artificial H-H neuron system. This paper aims to analyze how an artificial H-H neuron responds to add different types of noise using an electrical current and subunit noise model. The spiking and bursting behavior of this neuron is also investigated through numerical simulations. In addition, through statistic analysis, the intensity of different kinds of noise distributions is discussed to obtain their relationship with the mean firing rate, interspike intervals, and stochastic resonance.
Collapse
|