1
|
Hoffmann L, Beerwerth J, Moch K, Böhmer R. Phenol, the simplest aromatic monohydroxy alcohol, displays a faint Debye-like process when mixed with a nonassociating liquid. Phys Chem Chem Phys 2023; 25:24042-24059. [PMID: 37654228 DOI: 10.1039/d3cp02774k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Solvated in propylene carbonate, viscous phenol is studied using dielectric spectroscopy and shear rheology. In addition, several oxygen-17 and deuteron nuclear magnetic resonance (NMR) techniques are applied to specifically isotope labeled equimolar mixtures. Quantum chemical calculations are used to check the electrical field gradient at phenol's oxygen site. The chosen combination of NMR methods facilitates the selective examination of potentially hydrogen-bond related contributions as well as those dominated by the structural relaxation. Taken together the present results for phenol in equimolar mixtures with the van der Waals liquid propylene carbonate provide evidence for the existence of a very weak Debye-like process that originates from ringlike supramolecular associates.
Collapse
Affiliation(s)
- Lars Hoffmann
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Kevin Moch
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
2
|
Mikkelsen M, Gabriel JP, Hecksher T. Dielectric and Shear Mechanical Spectra of Propanols: The Influence of Hydrogen-Bonded Structures. J Phys Chem B 2023; 127:371-377. [PMID: 36563319 DOI: 10.1021/acs.jpcb.2c07120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a dielectric and shear mechanical study of 1-propanol and three phenylpropanols. Contrary to other monoalcohols, the phenylpropanols do not show a bimodal behavior in their dielectric response, but instead show a single, rather narrow process. Combined dielectric and light scattering spectra (Böhmer, T.; et al. J. Phys. Chem. B 2019, 123, 10959) have shown that this single peak may be separated into a self- and a cross-correlation part, thus indicating that phenylpropanols do display features originating from hydrogen-bonded structures. The shear mechanical spectra support that interpretation, demonstrating a subtle, yet clear, low-frequency polymer-like mode, similar to what is found in other monoalcohols. An analysis of the characteristic time scales found in the spectra shows that shear alpha relaxation is faster than the dielectric alpha and that time scale separation of the dielectric Debye and alpha processes is temperature independent and nearly identical in all the phenylpropanols.
Collapse
Affiliation(s)
- Mathias Mikkelsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Jan Philipp Gabriel
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| |
Collapse
|
3
|
D'Hondt C, Morineau D. Dynamics of type V menthol-thymol deep eutectic solvents: Do they reveal non-ideality? J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Grelska J, Jurkiewicz K, Burian A, Pawlus S. Supramolecular Structure of Phenyl Derivatives of Butanol Isomers. J Phys Chem B 2022; 126:3563-3571. [PMID: 35522735 PMCID: PMC9125557 DOI: 10.1021/acs.jpcb.2c01269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Wide-angle X-ray
scattering patterns were recorded for a series
of aliphatic butanol isomers (n-, iso-, sec-, tert-butanol) and their
phenyl derivatives (4-phenyl-1-butanol, 2-methyl-3-phenyl-1-propanol,
4-phenyl-2-butanol, and 2-methyl-1-phenyl-2-propanol, respectively)
to determine their atomic-scale structure with particular emphasis
on the formation of supramolecular clusters. In addition, molecular
dynamics simulations were carried out and yielded good agreement with
experimental data. The combination of experimental and theoretical
results allowed clarification of the origin of the pre-peak appearing
at low scattering angles for the aliphatic butanols and its absence
for their phenyl counterparts. It was demonstrated that the location
of the hydroxyl group in the molecule of alkyl butanol, its geometry,
and rigidity determine the morphology of the supramolecular clusters,
while the addition of the aromatic moiety causes more disordered organization
of molecules. The phenyl group significantly decreases the number
of hydrogen bonds and size of the supramolecular clusters formed via
the O–H···O scheme. The lower association ability
of phenyl alcohols via H-bonds is additionally attenuated by the appearance
of competing π–π configurations evidenced by the
structural models.
Collapse
Affiliation(s)
- Joanna Grelska
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Karolina Jurkiewicz
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Andrzej Burian
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Sebastian Pawlus
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
5
|
Ananiadou A, Papamokos G, Steinhart M, Floudas G. Effect of confinement on the dynamics of 1-propanol and other monohydroxy alcohols. J Chem Phys 2021; 155:184504. [PMID: 34773957 DOI: 10.1063/5.0063967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the effect of confinement on the dynamics of three monohydroxy alcohols (1-propanol, 2-ethyl-1-hexanol, and 4-methyl-3-heptanol) differing in their chemical structure and, consequently, in the dielectric strength of the "Debye" process. Density functional theory calculations in bulk 1-propanol identified both linear and ring-like associations composed of up to five repeat units. The simulation results revealed that the ring structures, with a low dipole moment (∼2 D), are energetically preferred over the linear assemblies with a dipole moment of 2.18 D per repeat unit. Under confinement in nanoporous alumina (in templates with pore diameters ranging from 400 to 20 nm), all dynamic processes were found to speed up irrespective of the molecular architecture. The characteristic freezing temperatures of the α and the Debye-like processes followed the pore size dependence: Ta,D=Ta,D bulk-A/d1/2, where d is the pore diameter. The characteristic "freezing" temperatures for the Debye-like (the slow process for confined 1-propanol is non-Debye) and the α-processes decrease, respectively, by 6.5 and 13 K in confined 1-propanol, by 9.5 and 19 K in confined 2-ethyl-1-hexanol, and by 9 and 23 K in confined 4-methyl-3-heptanol within the same 25 nm pores. In 2-ethyl-1-hexanol, confinement reduced the number of linearly associated repeats from approximately heptamers in the bulk to dimers within 25 pores. In addition, the slower process in bulk 2-ethyl-1-hexanol and 4-methyl-3-heptanol, where the signal is dominated by ring-like supramolecular assemblies, is clearly non-Debye. The results suggest that the effect of confinement is dominant in the latter assemblies.
Collapse
Affiliation(s)
- Antonela Ananiadou
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - George Papamokos
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| |
Collapse
|
6
|
Bolle J, Bierwirth SP, Požar M, Perera A, Paulus M, Münzner P, Albers C, Dogan S, Elbers M, Sakrowski R, Surmeier G, Böhmer R, Tolan M, Sternemann C. Isomeric effects in structure formation and dielectric dynamics of different octanols. Phys Chem Chem Phys 2021; 23:24211-24221. [PMID: 34693949 DOI: 10.1039/d1cp02468j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The understanding of the microstructure of associated liquids promoted by hydrogen-bonding and constrained by steric hindrance is highly relevant in chemistry, physics, biology and for many aspects of daily life. In this study we use a combination of X-ray diffraction, dielectric spectroscopy and molecular dynamics simulations to reveal temperature induced changes in the microstructure of different octanol isomers, i.e., linear 1-octanol and branched 2-, 3- and 4-octanol. In all octanols, the hydroxyl groups form the basis of chain-, cyclic- or loop-like bonded structures that are separated by outwardly directed alkyl chains. This clustering is analyzed through the scattering pre-peaks observed from X-ray scattering and simulations. The charge ordering which pilots OH aggregation can be linked to the strength of the Debye process observed in dielectric spectroscopy. Interestingly, all methods used here converge to the same interpretation: as one moves from 1-octanol to the branched octanols, the cluster structure evolves from loose large aggregates to a larger number of smaller, tighter aggregates. All alcohols exhibit a peculiar temperature dependence of both the pre-peak and Debye process, which can be understood as a change in microstructure promoted by chain association with increased chain length possibly assisted by ring-opening effects. All these results tend to support the intuitive picture of the entropic constraint provided by branching through the alkyl tails and highlight its capital entropic role in supramolecular assembly.
Collapse
Affiliation(s)
- Jennifer Bolle
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - S Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Martina Požar
- University of Split, Faculty of Science, Ruera Boškovića 33, 21000, Split, Croatia
| | - Aurélien Perera
- Sorbonne Université, Laboratoire de Physique Théorique de la Matiére Condensée (UMR CNRS 7600), 4 Place Jussieu, F75252, Paris cedex 05, France
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Philipp Münzner
- Fakultät Physik, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Christian Albers
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Susanne Dogan
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Mirko Elbers
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Robin Sakrowski
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Göran Surmeier
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Metin Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany.
| |
Collapse
|
7
|
Arrese-Igor S, Alegría A, Arbe A, Colmenero J. Insights into the non-exponential behavior of the dielectric Debye-like relaxation in monoalcohols. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Xu D, Feng S, Wang JQ, Wang LM, Richert R. Entropic Nature of the Debye Relaxation in Glass-Forming Monoalcohols. J Phys Chem Lett 2020; 11:5792-5797. [PMID: 32608239 DOI: 10.1021/acs.jpclett.0c01499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamics and thermodynamics of the Debye and structural (α) relaxations in isomeric monoalcohols near the glass transition temperature Tg are explored using dielectric and calorimetric techniques. The α relaxation strength at Tg is found to correlate with the heat capacity increment, but no thermal signals can be detected to link to the Debye relaxation. We also observed that the activation energy of the Debye relaxation in monoalcohols is quantitatively correlated with that of the α relaxation at the kinetic Tg, sharing the dynamic behavior of the Rouse modes found in polymers. The experimental results together with the analogy to the Rouse modes in polymers suggest that the Debye process in monoalcohols is an entropic process manifested by the total dipole fluctuation of the supramolecular structures, which is triggered and driven by the α relaxation.
Collapse
Affiliation(s)
- Di Xu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Shidong Feng
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - R Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
9
|
Guo Y, Jin X, Kang Z, Wang LM. Distinct changes of Debye relaxation in primary and secondary monoalcohols by carbon nano-dots. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Bierwirth SP, Honorio G, Gainaru C, Böhmer R. Linear and nonlinear shear studies reveal supramolecular responses in supercooled monohydroxy alcohols with faint dielectric signatures. J Chem Phys 2019; 150:104501. [DOI: 10.1063/1.5086529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- S. Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Gabriel Honorio
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
11
|
Bierwirth SP, Gainaru C, Böhmer R. Coexistence of two structural relaxation processes in monohydroxy alcohol-alkyl halogen mixtures: Dielectric and rheological studies. J Chem Phys 2018; 149:044509. [PMID: 30068194 DOI: 10.1063/1.5037037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Evidence for the existence of two glass transitions is found in binary mixtures of monohydroxy alcohols with an aprotic alkyl halide by means of dielectric spectroscopy and, markedly, also shear rheology. In the mechanical data, an enormous separation of two components becomes obvious for suitable compositions. The observation of bimodal motional heterogeneity is possible despite the fact that the glass transition temperatures of these substances differ by only 40 K. Obviously, the hydrogen-bond driven formation of supramolecular structures in one of the mixture components facilitates the emergence of dynamic contrast which for other binary liquids was so far only observed in the presence of much larger glass transition temperature differences.
Collapse
Affiliation(s)
- S Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
12
|
Bierwirth SP, Gainaru C, Böhmer R. Communication: Correlation of terminal relaxation rate and viscosity enhancement in supramolecular small-molecule liquids. J Chem Phys 2018; 148:221102. [DOI: 10.1063/1.5037803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- S. P. Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - C. Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - R. Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
13
|
Büning T, Lueg J, Bolle J, Sternemann C, Gainaru C, Tolan M, Böhmer R. Connecting structurally and dynamically detected signatures of supramolecular Debye liquids. J Chem Phys 2018; 147:234501. [PMID: 29272922 DOI: 10.1063/1.4986866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The monohydroxy alcohol 2-ethyl-1-hexanol mixed with the halogen-substituted alkyl halides 2-ethyl-1-hexyl chloride and 2-ethyl-1-hexyl bromide was studied using synchrotron-based x-ray scattering. In the diffraction patterns, an oxygen-related prepeak appears. The concentration dependence of its intensity, shape, and position indicates that the formation of the hydrogen-bonded associates of monohydroxy alcohols is largely hindered by the halogen alkane admixture. Using dielectric spectroscopy and high-resolution rheology on the same liquid mixtures, it is shown that these structural features are correlated with the relaxation mechanisms giving rise to supramolecular low-frequency dynamics.
Collapse
Affiliation(s)
- T Büning
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - J Lueg
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - J Bolle
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - C Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - C Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - M Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
14
|
Xing K, Chatterjee S, Saito T, Gainaru C, Sokolov AP. Impact of Hydrogen Bonding on Dynamics of Hydroxyl-Terminated Polydimethylsiloxane. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00262] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kunyue Xing
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Sabornie Chatterjee
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tomonori Saito
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Catalin Gainaru
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Fakultät
für Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Alexei P. Sokolov
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
15
|
|