1
|
Tran PN, Ray S, Lemma L, Li Y, Sweeney R, Baskaran A, Dogic Z, Hong P, Hagan MF. Deep-learning optical flow for measuring velocity fields from experimental data. SOFT MATTER 2024; 20:7246-7257. [PMID: 39225732 DOI: 10.1039/d4sm00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Deep learning-based optical flow (DLOF) extracts features in adjacent video frames with deep convolutional neural networks. It uses those features to estimate the inter-frame motions of objects. We evaluate the ability of optical flow to quantify the spontaneous flows of microtubule (MT)-based active nematics under different labeling conditions, and compare its performance to particle image velocimetry (PIV). We obtain flow velocity ground truths either by performing semi-automated particle tracking on samples with sparsely labeled filaments, or from passive tracer beads. DLOF produces more accurate velocity fields than PIV for densely labeled samples. PIV cannot reliably distinguish contrast variations at high densities, particularly along the nematic director. DLOF overcomes this limitation. For sparsely labeled samples, DLOF and PIV produce comparable results, but DLOF gives higher-resolution fields. Our work establishes DLOF as a versatile tool for measuring fluid flows in a broad class of active, soft, and biophysical systems.
Collapse
Affiliation(s)
- Phu N Tran
- Department of Physics, Brandeis University, Waltham, MA 02453, USA.
| | - Sattvic Ray
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Linnea Lemma
- Department of Physics, Brandeis University, Waltham, MA 02453, USA.
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Yunrui Li
- Department of Computer Science, Brandeis University, Waltham, MA 02453, USA.
| | - Reef Sweeney
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, MA 02453, USA.
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, MA 02453, USA.
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
- Biomolecular and Engineering Science, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Pengyu Hong
- Department of Computer Science, Brandeis University, Waltham, MA 02453, USA.
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
2
|
Caballero F, You Z, Marchetti MC. Vorticity phase separation and defect lattices in the isotropic phase of active liquid crystals. SOFT MATTER 2023; 19:7828-7835. [PMID: 37796173 DOI: 10.1039/d3sm00744h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
We use numerical simulations and linear stability analysis to study the dynamics of an active liquid crystal film on a substrate in the regime where the passive system would be isotropic. Extensile activity builds up local orientational order and destabilizes the quiescent isotropic state above a critical activity, eventually resulting in spatiotemporal chaotic dynamics akin to the one observed ubiquitously in the nematic state. Here we show that tuning substrate friction yields a variety of emergent structures at intermediate activity, including lattices of flow vortices with associated regular arrangements of topological defects and a new state where flow vortices trap pairs of +1/2 defect that chase each other's tail. These chiral units spontaneously pick the sense of rotation and organize in a hexagonal lattice, surrounded by a diffuse flow of opposite rotation to maintain zero net vorticity. The length scale of these emergent structures is set by the screening length of the flow, controlled by the shear viscosity η and the substrate friction Γ, and can be captured by simple mode selection of the vortical flows. We demonstrate that the emergence of coherent structures can be interpreted as a phase separation of vorticity, where friction plays a role akin to that of birth/death processes in breaking conservation of the phase separating species and selecting a characteristic scale for the patterns. Our work shows that friction provides an experimentally accessible tuning parameter for designing controlled active flows.
Collapse
Affiliation(s)
- Fernando Caballero
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Zhihong You
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
3
|
Golden M, Grigoriev RO, Nambisan J, Fernandez-Nieves A. Physically informed data-driven modeling of active nematics. SCIENCE ADVANCES 2023; 9:eabq6120. [PMID: 37406118 PMCID: PMC10321743 DOI: 10.1126/sciadv.abq6120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
A continuum description is essential for understanding a variety of collective phenomena in active matter. However, building quantitative continuum models of active matter from first principles can be extremely challenging due to both the gaps in our knowledge and the complicated structure of nonlinear interactions. Here, we use a physically informed data-driven approach to construct a complete mathematical model of an active nematic from experimental data describing kinesin-driven microtubule bundles confined to an oil-water interface. We find that the structure of the model is similar to the Leslie-Ericksen and Beris-Edwards models, but there are appreciable and important differences. Rather unexpectedly, elastic effects are found to play no role in the experiments considered, with the dynamics controlled entirely by the balance between active stresses and friction stresses.
Collapse
Affiliation(s)
- Matthew Golden
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roman O. Grigoriev
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jyothishraj Nambisan
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Condensed Matter Physics, University of Barcelona, Barcelona 08028, Spain
- Institute of Complex Systems (UBICS), University of Barcelona, Barcelona 08028, Spain
| | - Alberto Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, Barcelona 08028, Spain
- Institute of Complex Systems (UBICS), University of Barcelona, Barcelona 08028, Spain
- ICREA-Institució Catalanade Recerca i Estudis Avançats, Barcelona 08010, Spain
| |
Collapse
|
4
|
Schimming CD, Reichhardt CJO, Reichhardt C. Friction-mediated phase transition in confined active nematics. Phys Rev E 2023; 108:L012602. [PMID: 37583137 DOI: 10.1103/physreve.108.l012602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023]
Abstract
Using a minimal continuum model, we investigate the interplay between circular confinement and substrate friction in active nematics. Upon increasing the friction from low to high, we observe a dynamical phase transition from a circulating flow phase to an anisotropic flow phase in which the flow tends to align perpendicular to the nematic director at the boundary. We demonstrate that both the flow structure and dynamic correlations in the latter phase differ from those of an unconfined, active turbulent system and may be controlled by the prescribed nematic boundary conditions. Our results show that substrate friction and geometric confinement act as valuable control parameters in active nematics.
Collapse
Affiliation(s)
- Cody D Schimming
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
5
|
Kinoshita Y, Uchida N. Flow patterns and defect dynamics of active nematic liquid crystals under an electric field. Phys Rev E 2023; 108:014605. [PMID: 37583184 DOI: 10.1103/physreve.108.014605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/19/2023] [Indexed: 08/17/2023]
Abstract
The effects of an electric field on the flow patterns and defect dynamics of two-dimensional active nematic liquid crystals are numerically investigated. We found that field-induced director reorientation causes anisotropic active turbulence characterized by enhanced flow perpendicular to the electric field. The average flow speed and its anisotropy are maximized at an intermediate field strength. Topological defects in the anisotropic active turbulence are localized and show characteristic dynamics with simultaneous creation of two pairs of defects. A laning state characterized by stripe domains with alternating flow directions is found at a larger field strength near the transition to the uniformly aligned state. We obtained periodic oscillations between the laning state and active turbulence, which resembles an experimental observation of active nematics subject to anisotropic friction.
Collapse
Affiliation(s)
- Yutaka Kinoshita
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| | - Nariya Uchida
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Joshi C, Ray S, Lemma LM, Varghese M, Sharp G, Dogic Z, Baskaran A, Hagan MF. Data-Driven Discovery of Active Nematic Hydrodynamics. PHYSICAL REVIEW LETTERS 2022; 129:258001. [PMID: 36608242 DOI: 10.1103/physrevlett.129.258001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Active nematics can be modeled using phenomenological continuum theories that account for the dynamics of the nematic director and fluid velocity through partial differential equations (PDEs). While these models provide a statistical description of the experiments, the relevant terms in the PDEs and their parameters are usually identified indirectly. We adapt a recently developed method to automatically identify optimal continuum models for active nematics directly from spatiotemporal data, via sparse regression of the coarse-grained fields onto generic low order PDEs. After extensive benchmarking, we apply the method to experiments with microtubule-based active nematics, finding a surprisingly minimal description of the system. Our approach can be generalized to gain insights into active gels, microswimmers, and diverse other experimental active matter systems.
Collapse
Affiliation(s)
- Chaitanya Joshi
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - Sattvic Ray
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Linnea M Lemma
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Minu Varghese
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 USA
| | - Graham Sharp
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Zvonimir Dogic
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
7
|
Kumar S, Mishra S. Active nematic gel with quenched disorder. Phys Rev E 2022; 106:044603. [PMID: 36397569 DOI: 10.1103/physreve.106.044603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
With quenched disorder, we introduce two-dimensional active nematics suspended in an incompressible fluid. We write the coarse-grained hydrodynamic equations of motion for slow variables, viz. density, orientation, and flow fields. The quenched disorder is introduced such that it interacts with the local orientation at every point with some strength. Disorder strength is tuned from zero to large values. We numerically study the defect dynamics and system kinetics and find that the finite disorder slows the ordering. The presence of fluid induces large fluctuation in the orientation field, further disturbing the ordering. The large fluctuation in the orientation field due to the fluid is so dominant that it reduces the effect of the quenched disorder. We have also found that the disorder effect is almost the same for both the contractile and extensile nature of active stresses in the system. This study can help to understand the impact of quenched disorder on the ordering kinetics of active gels with nematic interaction among the constituent objects.
Collapse
Affiliation(s)
- Sameer Kumar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
8
|
Thampi SP. Channel Confined Active Nematics. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Kumar N, Zhang R, Redford SA, de Pablo JJ, Gardel ML. Catapulting of topological defects through elasticity bands in active nematics. SOFT MATTER 2022; 18:5271-5281. [PMID: 35789364 DOI: 10.1039/d2sm00414c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Active materials are those in which individual, uncoordinated local stresses drive the material out of equilibrium on a global scale. Examples of such assemblies can be seen across scales from schools of fish to the cellular cytoskeleton and underpin many important biological processes. Synthetic experiments that recapitulate the essential features of such active systems have been the object of study for decades as their simple rules allow us to elucidate the physical underpinnings of collective motion. One system of particular interest has been active nematic liquid crystals (LCs). Because of their well understood passive physics, LCs provide a rich platform to interrogate the effects of active stress. The flows and steady state structures that emerge in an active LCs have been understood to result from a competition between nematic elasticity and the local activity. However most investigations of such phenomena consider only the magnitude of the elastic resistance and not its peculiarities. Here we investigate a nematic liquid crystal and selectively change the ratio of the material's splay and bend elasticities. We show that increases in the nematic's bend elasticity specifically drives the material into an exotic steady state where elongated regions of acute bend distortion or "elasticity bands" dominate the structure and dynamics. We show that these bands strongly influence defect dynamics, including the rapid motion or "catapulting" along the disintegration of one of these bands thus converting bend distortion into defect transport. Thus, we report a novel dynamical state resultant from the competition between nematic elasticity and active stress.
Collapse
Affiliation(s)
- Nitin Kumar
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Rui Zhang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Steven A Redford
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, Illinois 60637, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Margaret L Gardel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
10
|
Aranson IS. Bacterial active matter. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:076601. [PMID: 35605446 DOI: 10.1088/1361-6633/ac723d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Bacteria are among the oldest and most abundant species on Earth. Bacteria successfully colonize diverse habitats and play a significant role in the oxygen, carbon, and nitrogen cycles. They also form human and animal microbiota and may become sources of pathogens and a cause of many infectious diseases. Suspensions of motile bacteria constitute one of the most studied examples of active matter: a broad class of non-equilibrium systems converting energy from the environment (e.g., chemical energy of the nutrient) into mechanical motion. Concentrated bacterial suspensions, often termed active fluids, exhibit complex collective behavior, such as large-scale turbulent-like motion (so-called bacterial turbulence) and swarming. The activity of bacteria also affects the effective viscosity and diffusivity of the suspension. This work reports on the progress in bacterial active matter from the physics viewpoint. It covers the key experimental results, provides a critical assessment of major theoretical approaches, and addresses the effects of visco-elasticity, liquid crystallinity, and external confinement on collective behavior in bacterial suspensions.
Collapse
Affiliation(s)
- Igor S Aranson
- Departments of Biomedical Engineering, Chemistry, and Mathematics, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
11
|
Topography-induced large-scale antiparallel collective migration in vascular endothelium. Nat Commun 2022; 13:2797. [PMID: 35589751 PMCID: PMC9120158 DOI: 10.1038/s41467-022-30488-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Collective migration of vascular endothelial cells is central for embryonic development, angiogenesis, and wound closure. Although physical confinement of cell assemblies has been shown to elicit specific patterns of collective movement in various cell types, endothelial migration in vivo often occurs without confinement. Here we show that unconfined endothelial cell monolayers on microgroove substrates that mimic the anisotropic organization of the extracellular matrix exhibit a specific type of collective movement that takes the form of a periodic pattern of antiparallel cell streams. We further establish that the development of these streams requires intact cell-cell junctions and that stream sizes are particularly sensitive to groove depth. Finally, we show that modeling the endothelial cell sheet as an active fluid with the microgrooves acting as constraints on cell orientation predicts the occurrence of the periodic antiparallel cell streams as well as their lengths and widths. We posit that in unconfined cell assemblies, physical factors that constrain or bias cellular orientation such as anisotropic extracellular matrix cues or directed flow-derived shear forces dictate the pattern of collective cell movement. The physical environment dictates the emergence of specific patterns of collective cell migration. Here, authors show that unconfined endothelial monolayers on microgroove substrates exhibit an original pattern of antiparallel cell streams.
Collapse
|
12
|
Koch CM, Wilczek M. Role of Advective Inertia in Active Nematic Turbulence. PHYSICAL REVIEW LETTERS 2021; 127:268005. [PMID: 35029495 DOI: 10.1103/physrevlett.127.268005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Suspensions of active agents with nematic interactions exhibit complex spatiotemporal dynamics such as mesoscale turbulence. Since the Reynolds number of microscopic flows is very small on the scale of individual agents, inertial effects are typically excluded in continuum theories of active nematic turbulence. Whether active stresses can collectively excite inertial flows is currently unclear. To address this question, we investigate a two-dimensional continuum theory for active nematic turbulence. In particular, we compare mesoscale turbulence with and without the effects of advective inertia. We find that inertial effects can influence the flow already close to the onset of the turbulent state and, moreover, give rise to large-scale fluid motion for strong active driving. A detailed analysis of the kinetic energy budget reveals an energy transfer to large scales mediated by inertial advection. While this transfer is small in comparison to energy injection and dissipation, its effects accumulate over time. The inclusion of friction, which is typically present in experiments, can compensate for this effect. The findings suggest that the inclusion of inertia and friction may be necessary for dynamically consistent theories of active nematic turbulence.
Collapse
Affiliation(s)
- Colin-Marius Koch
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany and Faculty of Physics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Michael Wilczek
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany and Faculty of Physics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Sarkar N, Basu A, Toner J. Swarming Bottom Feeders: Flocking at Solid-Liquid Interfaces. PHYSICAL REVIEW LETTERS 2021; 127:268004. [PMID: 35029464 DOI: 10.1103/physrevlett.127.268004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
We present the hydrodynamic theory of coherent collective motion ("flocking") at a solid-liquid interface, and many of its predictions for experiment. We find that such systems are stable, and have long-range orientational order, over a wide range of parameters. When stable, these systems exhibit "giant number fluctuations," which grow as the 3/4th power of the mean number. Stable systems also exhibit anomalous rapid diffusion of tagged particles suspended in the passive fluid along any directions in a plane parallel to the solid-liquid interface, whereas the diffusivity along the direction perpendicular to the plane is not anomalous. In the remaining parameter space, the system becomes unstable.
Collapse
Affiliation(s)
- Niladri Sarkar
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Abhik Basu
- Theory Division, Saha Institute of Nuclear Physics, Calcutta 700064, West Bengal, India
| | - John Toner
- Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
14
|
Mozaffari A, Zhang R, Atzin N, de Pablo JJ. Defect Spirograph: Dynamical Behavior of Defects in Spatially Patterned Active Nematics. PHYSICAL REVIEW LETTERS 2021; 126:227801. [PMID: 34152186 DOI: 10.1103/physrevlett.126.227801] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/06/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Topological defects in active liquid crystals can be confined by introducing gradients of activity. Here, we examine the dynamical behavior of two defects confined by a sharp gradient of activity that separates an active circular region and a surrounding passive nematic material. Continuum simulations are used to explain how the interplay among energy injection into the system, hydrodynamic interactions, and frictional forces governs the dynamics of topologically required self-propelling +1/2 defects. Our findings are rationalized in terms of a phase diagram for the dynamical response of defects in terms of activity and frictional damping strength. Different regions of the underlying phase diagram correspond to distinct dynamical modes, namely immobile defects, steady rotation of defects, bouncing defects, bouncing-cruising defects, dancing defects, and multiple defects with irregular dynamics. These dynamic states raise the prospect of generating synchronized defect arrays for microfluidic applications.
Collapse
Affiliation(s)
- Ali Mozaffari
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rui Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Noe Atzin
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
15
|
Lavrentovich OD. Design of nematic liquid crystals to control microscale dynamics. LIQUID CRYSTALS REVIEWS 2021; 8:59-129. [PMID: 34956738 PMCID: PMC8698256 DOI: 10.1080/21680396.2021.1919576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/11/2021] [Indexed: 05/25/2023]
Abstract
The dynamics of small particles, both living such as swimming bacteria and inanimate, such as colloidal spheres, has fascinated scientists for centuries. If one could learn how to control and streamline their chaotic motion, that would open technological opportunities in the transformation of stored or environmental energy into systematic motion, with applications in micro-robotics, transport of matter, guided morphogenesis. This review presents an approach to command microscale dynamics by replacing an isotropic medium with a liquid crystal. Orientational order and associated properties, such as elasticity, surface anchoring, and bulk anisotropy, enable new dynamic effects, ranging from the appearance and propagation of particle-like solitary waves to self-locomotion of an active droplet. By using photoalignment, the liquid crystal can be patterned into predesigned structures. In the presence of the electric field, these patterns enable the transport of solid and fluid particles through nonlinear electrokinetics rooted in anisotropy of conductivity and permittivity. Director patterns command the dynamics of swimming bacteria, guiding their trajectories, polarity of swimming, and distribution in space. This guidance is of a higher level of complexity than a simple following of the director by rod-like microorganisms. Namely, the director gradients mediate hydrodynamic interactions of bacteria to produce an active force and collective polar modes of swimming. The patterned director could also be engraved in a liquid crystal elastomer. When an elastomer coating is activated by heat or light, these patterns produce a deterministic surface topography. The director gradients define an activation force that shapes the elastomer in a manner similar to the active stresses triggering flows in active nematics. The patterned elastomer substrates could be used to define the orientation of cells in living tissues. The liquid-crystal guidance holds a major promise in achieving the goal of commanding microscale active flows.
Collapse
Affiliation(s)
- Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Department of Physics, Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
16
|
Zhou Z, Joshi C, Liu R, Norton MM, Lemma L, Dogic Z, Hagan MF, Fraden S, Hong P. Machine learning forecasting of active nematics. SOFT MATTER 2021; 17:738-747. [PMID: 33220675 DOI: 10.1039/d0sm01316a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Active nematics are a class of far-from-equilibrium materials characterized by local orientational order of force-generating, anisotropic constitutes. Traditional methods for predicting the dynamics of active nematics rely on hydrodynamic models, which accurately describe idealized flows and many of the steady-state properties, but do not capture certain detailed dynamics of experimental active nematics. We have developed a deep learning approach that uses a Convolutional Long-Short-Term-Memory (ConvLSTM) algorithm to automatically learn and forecast the dynamics of active nematics. We demonstrate our purely data-driven approach on experiments of 2D unconfined active nematics of extensile microtubule bundles, as well as on data from numerical simulations of active nematics.
Collapse
|
17
|
Chandrakar P, Varghese M, Aghvami SA, Baskaran A, Dogic Z, Duclos G. Confinement Controls the Bend Instability of Three-Dimensional Active Liquid Crystals. PHYSICAL REVIEW LETTERS 2020; 125:257801. [PMID: 33416339 DOI: 10.1103/physrevlett.125.257801] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/15/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Spontaneous growth of long-wavelength deformations is a defining feature of active liquid crystals. We investigate the effect of confinement on the instability of 3D active liquid crystals in the isotropic phase composed of extensile microtubule bundles and kinesin molecular motors. When shear aligned, such fluids exhibit finite-wavelength self-amplifying bend deformations. By systematically changing the channel size we elucidate how the instability wavelength and its growth rate depend on the channel dimensions. Experimental findings are qualitatively consistent with a minimal hydrodynamic model, where the fastest growing deformation is set by a balance of active driving and elastic relaxation. Our results demonstrate that confinement determines the structure and dynamics of active fluids on all experimentally accessible length scales.
Collapse
Affiliation(s)
- Pooja Chandrakar
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Minu Varghese
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - S Ali Aghvami
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Guillaume Duclos
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
18
|
Rivas DP, Shendruk TN, Henry RR, Reich DH, Leheny RL. Driven topological transitions in active nematic films. SOFT MATTER 2020; 16:9331-9338. [PMID: 32935705 DOI: 10.1039/d0sm00693a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The topological properties of many materials are central to their behavior. In intrinsically out-of-equilibrium active materials, the dynamics of topological defects can be particularly important. In this paper, local manipulation of the order, dynamics, and topological properties of microtubule-based active nematic films is demonstrated in a joint experimental and simulation study. Hydrodynamic stresses created by magnetically actuated rotation of disk-shaped colloids in proximity to the films compete with internal stresses in the active nematic, influencing the local motion of +1/2 charge topological defects that are intrinsic to the nematic order in the spontaneously turbulent active films. Sufficiently large applied stresses drive the formation of +1 charge topological vortices through the merger of two +1/2 defects. The directed motion of the defects is accompanied by ordering of the vorticity and velocity of the active flows within the film that is qualitatively unlike the response of passive viscous films. Many features of the film's response to the stress are captured by lattice Boltzmann simulations, providing insight into the anomalous viscoelastic nature of the active nematic. The topological vortex formation is accompanied by a rheological instability in the film that leads to significant increase in the flow velocities. Comparison of the velocity profile in vicinity of the vortex with fluid-dynamics calculations provides an estimate of the film viscosity.
Collapse
Affiliation(s)
- David P Rivas
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Tyler N Shendruk
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, UKLE11 3TU and School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UKEH9 3FD
| | - Robert R Henry
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Daniel H Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
19
|
Li ZY, Zhang DQ, Lin SZ, Li B. Pattern Formation and Defect Ordering in Active Chiral Nematics. PHYSICAL REVIEW LETTERS 2020; 125:098002. [PMID: 32915620 DOI: 10.1103/physrevlett.125.098002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Many biological systems display intriguing chiral patterns and dynamics. Here, we present an active nematic theory accounting for individual spin to explore the collective handedness in chiral rod-shaped aggregations. We show that coordinated individual spin and motility can engender a vortex-array pattern with chirality and drive ordering of topological defects. During this chiral process, the stationary trefoil-like defects self-organize into a periodic, hexagon-dominated polygonal network, which segregates persistently rotating cometlike defects in pairs within each polygon, leading to a translation symmetry at the global scale while a broken reflection symmetry at the local scale. Such defect ordering agrees exactly with the Voronoi tiling of two-dimensional space and the emergence of the hexagonal symmetry is deciphered in analogy with topological charge neutralization. We calculate energy barriers to the topological transition of the defect ordering and explain the existing metastable states with nonhexagonal polygons. Our findings shed light on the chiral morphodynamics in life processes and also suggest a potential route towards tuning self-organization in active materials.
Collapse
Affiliation(s)
- Zhong-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - De-Qing Zhang
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shao-Zhen Lin
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Thijssen K, Metselaar L, Yeomans JM, Doostmohammadi A. Active nematics with anisotropic friction: the decisive role of the flow aligning parameter. SOFT MATTER 2020; 16:2065-2074. [PMID: 32003382 DOI: 10.1039/c9sm01963d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We use continuum simulations to study the impact of anisotropic hydrodynamic friction on the emergent flows of active nematics. We show that, depending on whether the active particles align with or tumble in their collectively self-induced flows, anisotropic friction can result in markedly different patterns of motion. In a flow-aligning regime and at high anisotropic friction, the otherwise chaotic flows are streamlined into flow lanes with alternating directions, reproducing the experimental laning state that has been obtained by interfacing microtubule-motor protein mixtures with smectic liquid crystals. Within a flow-tumbling regime, however, we find that no such laning state is possible. Instead, the synergistic effects of friction anisotropy and flow tumbling can lead to the emergence of bound pairs of topological defects that align at an angle to the easy flow direction and navigate together throughout the domain. In addition to confirming the mechanism behind the laning states observed in experiments, our findings emphasise the role of the flow aligning parameter in the dynamics of active nematics.
Collapse
Affiliation(s)
- Kristian Thijssen
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| | - Luuk Metselaar
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| | - Amin Doostmohammadi
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark.
| |
Collapse
|
21
|
Patelli A, Djafer-Cherif I, Aranson IS, Bertin E, Chaté H. Understanding Dense Active Nematics from Microscopic Models. PHYSICAL REVIEW LETTERS 2019; 123:258001. [PMID: 31922774 DOI: 10.1103/physrevlett.123.258001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/13/2019] [Indexed: 06/10/2023]
Abstract
We study dry, dense active nematics at both particle and continuous levels. Specifically, extending the Boltzmann-Ginzburg-Landau approach, we derive well-behaved hydrodynamic equations from a Vicsek-style model with nematic alignment and pairwise repulsion. An extensive study of the phase diagram shows qualitative agreement between the two levels of description. We find in particular that the dynamics of topological defects strongly depends on parameters and can lead to "arch" solutions forming a globally polar, smecticlike arrangement of Néel walls. We show how these configurations are at the origin of the defect ordered states reported previously. This work offers a detailed understanding of the theoretical description of dense active nematics directly rooted in their microscopic dynamics.
Collapse
Affiliation(s)
- Aurelio Patelli
- Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Ilyas Djafer-Cherif
- Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Igor S Aranson
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Eric Bertin
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100094, China
- LPTMC, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
22
|
Chandragiri S, Doostmohammadi A, Yeomans JM, Thampi SP. Active transport in a channel: stabilisation by flow or thermodynamics. SOFT MATTER 2019; 15:1597-1604. [PMID: 30672556 DOI: 10.1039/c8sm02103a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent experiments on active materials, such as dense bacterial suspensions and microtubule-kinesin motor mixtures, show a promising potential for achieving self-sustained flows. However, to develop active microfluidics it is necessary to understand the behaviour of active systems confined to channels. Therefore here we use continuum simulations to investigate the behaviour of active fluids in a two-dimensional channel. Motivated by the fact that most experimental systems show no ordering in the absence of activity, we concentrate on temperatures where there is no nematic order in the passive system, so that any nematic order is induced by the active flow. We systematically analyze the results, identify several different stable flow states, provide a phase diagram and show that the key parameters controlling the flow are the ratio of channel width to the length scale of active flow vortices, and whether the system is flow aligning or flow tumbling.
Collapse
Affiliation(s)
- Santhan Chandragiri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | | | |
Collapse
|
23
|
Cai LB, Chaté H, Ma YQ, Shi XQ. Dynamical subclasses of dry active nematics. Phys Rev E 2019; 99:010601. [PMID: 30780307 DOI: 10.1103/physreve.99.010601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Indexed: 06/09/2023]
Abstract
We show that the dominant mode of alignment plays an important role in dry active nematics, leading to two dynamical subclasses defined by the nature of the instability of the nematic bands that characterize, in these systems, the coexistence phase separating the isotropic and fluctuating nematic states. In addition to the well-known instability inducing long undulations along the band, another stronger instability leading to the breakup of the band in many transversal segments may arise. We elucidate the origin of this strong instability for a realistic model of self-propelled rods and determine the high-order nonlinear terms responsible for it at the hydrodynamic level.
Collapse
Affiliation(s)
- Li-Bing Cai
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Hugues Chaté
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100094, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
24
|
Abstract
Active matter comprises individual units that convert energy into mechanical motion. In many examples, such as bacterial systems and biofilament assays, constituent units are elongated and can give rise to local nematic orientational order. Such "active nematics" systems have attracted much attention from both theorists and experimentalists. However, despite intense research efforts, data-driven quantitative modeling has not been achieved, a situation mainly due to the lack of systematic experimental data and to the large number of parameters of current models. Here, we introduce an active nematics system made of swarming filamentous bacteria. We simultaneously measure orientation and velocity fields and show that the complex spatiotemporal dynamics of our system can be quantitatively reproduced by a type of microscopic model for active suspensions whose important parameters are all estimated from comprehensive experimental data. This provides unprecedented access to key effective parameters and mechanisms governing active nematics. Our approach is applicable to different types of dense suspensions and shows a path toward more quantitative active matter research.
Collapse
|
25
|
Abstract
Active matter is a wide class of nonequilibrium systems consisting of interacting self-propelled agents transducing the energy stored in the environment into mechanical motion. Numerous examples range from microscopic cytoskeletal filaments and swimming organisms (bacteria and unicellular algae), synthetic catalytic nanomotors, colloidal self-propelled Janus particles, to macroscopic bird flocks, fish schools, and even human crowds. Active matter demonstrates a remarkable tendency toward self-organization and development of collective states with the long-range spatial order. Furthermore, active materials exhibit properties that are not present in traditional materials like plastics or ceramics: self-repair, shape change, and adaptation. A suspension of microscopic swimmers, such as motile bacteria or self-propelled colloids (active suspensions), is possibly the simplest and the most explored realization of active matter. Recent studies of active suspensions revealed a wealth of unexpected behaviors, from a dramatic reduction of the effective viscosity, enhanced mixing and self-diffusion, rectification of chaotic motion, to artificial rheotaxis (drift against the imposed flow) and cross-stream migration. To date, most of the studies of active matter are performed in isotropic suspending medium, like water with the addition of some "fuel", e.g., nutrient for bacteria or H2O2 for catalytic bimetallic AuPt nanorods. A highly structured anisotropic suspending medium represented by lyotropic liquid crystal (water-soluble) opens enormous opportunities to control and manipulate active matter. Liquid crystals exhibit properties intermediate between solid and liquids; they may flow like a liquid but respond to deformations as a solid due to a crystal-like orientation of molecules. Liquid crystals doped by a small amount of active component represent a new class of composite materials (living liquid crystals or LLCs) with unusual mechanical and optical properties. LLCs demonstrate a variety of highly organized dynamic collective states, spontaneous formation of dynamic textures of topological defects (singularities of local molecular orientation), controlled and reconfigurable transport of cargo particles, manipulation of individual trajectories of microswimmers, and many others. Besides insights into fundamental mechanisms governing active materials, living liquid crystals may have intriguing applications, such as the design of new classes of soft adaptive bioinspired materials capable to respond to physical and chemical stimuli, such as light, magnetic, and electric fields, mechanical shear, airborne pollutants, and bacterial toxins. This Account details the most recent developments in the field of LLCs and discusses how the anisotropy of liquid crystals can be harnessed to control and manipulate active materials.
Collapse
Affiliation(s)
- Igor S. Aranson
- Departments of Biomedical Engineering, Chemistry and Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
26
|
Saw TB, Xi W, Ladoux B, Lim CT. Biological Tissues as Active Nematic Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802579. [PMID: 30156334 DOI: 10.1002/adma.201802579] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/11/2018] [Indexed: 05/27/2023]
Abstract
Live tissues can self-organize and be described as active materials composed of cells that generate active stresses through continuous injection of energy. In vitro reconstituted molecular networks, as well as single-cell cytoskeletons show that their filamentous structures can portray nematic liquid crystalline properties and can promote nonequilibrium processes induced by active processes at the microscale. The appearance of collective patterns, the formation of topological singularities, and spontaneous phase transition within the cell cytoskeleton are emergent properties that drive cellular functions. More integrated systems such as tissues have cells that can be seen as coarse-grained active nematic particles and their interaction can dictate many important tissue processes such as epithelial cell extrusion and migration as observed in vitro and in vivo. Here, a brief introduction to the concept of active nematics is provided, and the main focus is on the use of this framework in the systematic study of predominantly 2D tissue architectures and dynamics in vitro. In addition how the nematic state is important in tissue behavior, such as epithelial expansion, tissue homeostasis, and the atherosclerosis disease state, is discussed. Finally, how the nematic organization of cells can be controlled in vitro for tissue engineering purposes is briefly discussed.
Collapse
Affiliation(s)
- Thuan Beng Saw
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore
| | - Wang Xi
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, 117411, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, 117411, Singapore
- Biomedical Institute for Global Health, Research and Technology (BIGHEART), National University of Singapore, MD6, 14 Medical Drive, #14-01, Singapore, 117599, Singapore
| |
Collapse
|
27
|
Dell'Arciprete D, Blow ML, Brown AT, Farrell FDC, Lintuvuori JS, McVey AF, Marenduzzo D, Poon WCK. A growing bacterial colony in two dimensions as an active nematic. Nat Commun 2018; 9:4190. [PMID: 30305618 PMCID: PMC6180060 DOI: 10.1038/s41467-018-06370-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 08/23/2018] [Indexed: 11/18/2022] Open
Abstract
How a single bacterium becomes a colony of many thousand cells is important in biomedicine and food safety. Much is known about the molecular and genetic bases of this process, but less about the underlying physical mechanisms. Here we study the growth of single-layer micro-colonies of rod-shaped Escherichiacoli bacteria confined to just under the surface of soft agarose by a glass slide. Analysing this system as a liquid crystal, we find that growth-induced activity fragments the colony into microdomains of well-defined size, whilst the associated flow orients it tangentially at the boundary. Topological defect pairs with charges \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm {\textstyle{1 \over 2}}$$\end{document}±12 are produced at a constant rate, with the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$+ {\textstyle{1 \over 2}}$$\end{document}+12 defects being propelled to the periphery. Theoretical modelling suggests that these phenomena have different physical origins from similar observations in other extensile active nematics, and a growing bacterial colony belongs to a new universality class, with features reminiscent of the expanding universe. Rod-shaped bacteria are an example of active matter. Here the authors find that a growing bacterial colony harbours internal cellular flows affecting orientational ordering in its interior and at the boundary. Results suggest this system may belong to a new active matter universality class.
Collapse
Affiliation(s)
- D Dell'Arciprete
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.,Dipartimento di Fisica, Universita' di Roma La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - M L Blow
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - A T Brown
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - F D C Farrell
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.,Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - J S Lintuvuori
- Université Bordeaux, CNRS, LOMA, UMR 5798, 33400, Talence, France
| | - A F McVey
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - W C K Poon
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
28
|
Doostmohammadi A, Ignés-Mullol J, Yeomans JM, Sagués F. Active nematics. Nat Commun 2018; 9:3246. [PMID: 30131558 PMCID: PMC6104062 DOI: 10.1038/s41467-018-05666-8] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 11/09/2022] Open
Abstract
Active matter extracts energy from its surroundings at the single particle level and transforms it into mechanical work. Examples include cytoskeleton biopolymers and bacterial suspensions. Here, we review experimental, theoretical and numerical studies of active nematics - a type of active system that is characterised by self-driven units with elongated shape. We focus primarily on microtubule-kinesin mixtures and the hydrodynamic theories that describe their properties. An important theme is active turbulence and the associated motile topological defects. We discuss ways in which active turbulence may be controlled, a pre-requisite to harvesting energy from active materials, and we consider the appearance, and possible implications, of active nematics and topological defects to cellular systems and biological processes.
Collapse
Affiliation(s)
- Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Rd., Oxford, OX1 3PU, UK.
| | - Jordi Ignés-Mullol
- Departament de Ciència de Materials i Química Física and Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Rd., Oxford, OX1 3PU, UK
| | - Francesc Sagués
- Departament de Ciència de Materials i Química Física and Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain
| |
Collapse
|
29
|
Norton MM, Baskaran A, Opathalage A, Langeslay B, Fraden S, Baskaran A, Hagan MF. Insensitivity of active nematic liquid crystal dynamics to topological constraints. Phys Rev E 2018; 97:012702. [PMID: 29448352 DOI: 10.1103/physreve.97.012702] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 11/07/2022]
Abstract
Confining a liquid crystal imposes topological constraints on the orientational order, allowing global control of equilibrium systems by manipulation of anchoring boundary conditions. In this article, we investigate whether a similar strategy allows control of active liquid crystals. We study a hydrodynamic model of an extensile active nematic confined in containers, with different anchoring conditions that impose different net topological charges on the nematic director. We show that the dynamics are controlled by a complex interplay between topological defects in the director and their induced vortical flows. We find three distinct states by varying confinement and the strength of the active stress: A topologically minimal state, a circulating defect state, and a turbulent state. In contrast to equilibrium systems, we find that anchoring conditions are screened by the active flow, preserving system behavior across different topological constraints. This observation identifies a fundamental difference between active and equilibrium materials.
Collapse
Affiliation(s)
- Michael M Norton
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Arvind Baskaran
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Achini Opathalage
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Blake Langeslay
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Seth Fraden
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Aparna Baskaran
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
30
|
Paoluzzi M, Maggi C, Marini Bettolo Marconi U, Gnan N. Critical phenomena in active matter. Phys Rev E 2016; 94:052602. [PMID: 27967125 DOI: 10.1103/physreve.94.052602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 06/06/2023]
Abstract
We investigate the effect of self-propulsion on a mean-field order-disorder transition. Starting from a φ^{4} scalar field theory subject to an exponentially correlated noise, we exploit the unified colored-noise approximation to map the nonequilibrium active dynamics onto an effective equilibrium one. This allows us to follow the evolution of the second-order critical point as a function of the noise parameters: the correlation time τ and the noise strength D. Our results suggest that the universality class of the model remains unchanged. We also estimate the effect of Gaussian fluctuations on the mean-field approximation finding an Ornstein-Zernike-like expression for the static structure factor at long wavelengths. Finally, to assess the validity of our predictions, we compare the mean-field theoretical results with numerical simulations of active Lennard-Jones particles in two and three dimensions, finding good qualitative agreement at small τ values.
Collapse
Affiliation(s)
- M Paoluzzi
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - C Maggi
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Piazzale A. Moro 2, I-00185, Roma, Italy
| | - U Marini Bettolo Marconi
- Scuola di Scienze e Tecnologie, Università di Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy and INFN, Sezione di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - N Gnan
- CNR, ISC, UOS Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| |
Collapse
|
31
|
Srivastava P, Mishra P, Marchetti MC. Negative stiffness and modulated states in active nematics. SOFT MATTER 2016; 12:8214-8225. [PMID: 27714318 DOI: 10.1039/c6sm01493c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We examine the dynamics of an active nematic liquid crystal on a frictional substrate. When frictional damping dominates over viscous dissipation, we eliminate flow in favor of active stresses to obtain a minimal dynamical model for the nematic order parameter, with elastic constants renormalized by activity. The renormalized elastic constants can become negative at large activity, leading to the selection of spatially inhomogeneous patterns via a mechanism analogous to that responsible for modulated phases arising at an equilibrium Lifshitz point. Tuning activity and the degree of nematic order in the passive system, we obtain a linear stability phase diagram that exhibits a nonequilibrium tricritical point where ordered, modulated and disordered phases meet. Numerical solution of the nonlinear equations yields a succession of spatial structures of increasing complexity with increasing activity, including kink walls and active turbulence, as observed in experiments on microtubule bundles confined at an oil-water interface. Our work provides a minimal model for an overdamped active nematic that reproduces all the nonequilibrium structures seen in simulations of the full active nematic hydrodynamics and provides a framework for understanding some of the mechanisms for selection of the nonequilibrium patterns in the language of equilibrium critical phenomena.
Collapse
Affiliation(s)
- Pragya Srivastava
- Physics Department and Syracuse Soft Matter Program, Syracuse University, Syracuse, NY 13244, USA
| | - Prashant Mishra
- Physics Department and Syracuse Soft Matter Program, Syracuse University, Syracuse, NY 13244, USA
| | - M Cristina Marchetti
- Physics Department and Syracuse Soft Matter Program, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
32
|
Doostmohammadi A, Thampi SP, Yeomans JM. Defect-Mediated Morphologies in Growing Cell Colonies. PHYSICAL REVIEW LETTERS 2016; 117:048102. [PMID: 27494503 DOI: 10.1103/physrevlett.117.048102] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Indexed: 05/27/2023]
Abstract
Morphological trends in growing colonies of living cells are at the core of physiological and evolutionary processes. Using active gel equations, which include cell division, we show that shape changes during the growth can be regulated by the dynamics of topological defects in the orientation of cells. The friction between the dividing cells and underlying substrate drives anisotropic colony shapes toward more isotropic morphologies, by mediating the number density and velocity of topological defects. We show that the defects interact with the interface at a specific interaction range, set by the vorticity length scale of flows within the colony, and that the cells predominantly reorient parallel to the interface due to division-induced active stresses.
Collapse
Affiliation(s)
- Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Sumesh P Thampi
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
33
|
Putzig E, Redner GS, Baskaran A, Baskaran A. Instabilities, defects, and defect ordering in an overdamped active nematic. SOFT MATTER 2016; 12:3854-9. [PMID: 26983376 PMCID: PMC5166704 DOI: 10.1039/c6sm00268d] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We consider a phenomenological continuum theory for an extensile, overdamped active nematic liquid crystal, applicable in the dense regime. Constructed from general principles, the theory is universal, with parameters independent of any particular microscopic realization. We show that it exhibits two distinct instabilities, one of which arises due to shear forces, and the other due to active torques. Both lead to the proliferation of defects. We focus on the active torque bend instability and find three distinct nonequilibrium steady states including a defect-ordered nematic in which +½ disclinations develop polar ordering. We characterize the phenomenology of these phases and identify the relationship of this theoretical description to experimental realizations and other theoretical models of active nematics.
Collapse
Affiliation(s)
- Elias Putzig
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA.
| | | | | | | |
Collapse
|
34
|
Doostmohammadi A, Adamer MF, Thampi SP, Yeomans JM. Stabilization of active matter by flow-vortex lattices and defect ordering. Nat Commun 2016; 7:10557. [PMID: 26837846 PMCID: PMC4742889 DOI: 10.1038/ncomms10557] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/28/2015] [Indexed: 01/30/2023] Open
Abstract
Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet-dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials.
Collapse
Affiliation(s)
- Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | - Michael F. Adamer
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | - Sumesh P. Thampi
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | - Julia M. Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| |
Collapse
|
35
|
|
36
|
Gao T, Blackwell R, Glaser MA, Betterton MD, Shelley MJ. Multiscale modeling and simulation of microtubule-motor-protein assemblies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062709. [PMID: 26764729 PMCID: PMC5082993 DOI: 10.1103/physreve.92.062709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 05/10/2023]
Abstract
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.
Collapse
Affiliation(s)
- Tong Gao
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| | - Robert Blackwell
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Matthew A Glaser
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - M D Betterton
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Michael J Shelley
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| |
Collapse
|
37
|
Abstract
Turbulence is a fundamental and ubiquitous phenomenon in nature, occurring from astrophysical to biophysical scales. At the same time, it is widely recognized as one of the key unsolved problems in modern physics, representing a paradigmatic example of nonlinear dynamics far from thermodynamic equilibrium. Whereas in the past, most theoretical work in this area has been devoted to Navier-Stokes flows, there is now a growing awareness of the need to extend the research focus to systems with more general patterns of energy injection and dissipation. These include various types of complex fluids and plasmas, as well as active systems consisting of self-propelled particles, like dense bacterial suspensions. Recently, a continuum model has been proposed for such "living fluids" that is based on the Navier-Stokes equations, but extends them to include some of the most general terms admitted by the symmetry of the problem [Wensink HH, et al. (2012) Proc Natl Acad Sci USA 109:14308-14313]. This introduces a cubic nonlinearity, related to the Toner-Tu theory of flocking, which can interact with the quadratic Navier-Stokes nonlinearity. We show that as a result of the subtle interaction between these two terms, the energy spectra at large spatial scales exhibit power laws that are not universal, but depend on both finite-size effects and physical parameters. Our combined numerical and analytical analysis reveals the origin of this effect and even provides a way to understand it quantitatively. Turbulence in active fluids, characterized by this kind of nonlinear self-organization, defines a new class of turbulent flows.
Collapse
|
38
|
Gao T, Blackwell R, Glaser MA, Betterton MD, Shelley MJ. Multiscale polar theory of microtubule and motor-protein assemblies. PHYSICAL REVIEW LETTERS 2015; 114:048101. [PMID: 25679909 PMCID: PMC4425281 DOI: 10.1103/physrevlett.114.048101] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 05/20/2023]
Abstract
Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new "bioactive" liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specific sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. The results connect local polar structure to flow structures and defect dynamics.
Collapse
Affiliation(s)
- Tong Gao
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| | - Robert Blackwell
- Department of Physics and Liquid Crystal Materials Research Center and Biofrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Matthew A. Glaser
- Department of Physics and Liquid Crystal Materials Research Center and Biofrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - M. D. Betterton
- Department of Physics and Liquid Crystal Materials Research Center and Biofrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Michael J. Shelley
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| |
Collapse
|