1
|
Sevilla FJ, Valdés-Gómez A, Torres-Carbajal A. Anomalous diffusion of scaled Brownian tracers. Phys Rev E 2024; 110:014113. [PMID: 39160948 DOI: 10.1103/physreve.110.014113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/29/2024] [Indexed: 08/21/2024]
Abstract
A model for anomalous transport of tracer particles diffusing in complex media in two dimensions is proposed. The model takes into account the characteristics of persistent motion that an active bath transfers to the tracer; thus, the model proposed here extends active Brownian motion, for which the stochastic dynamics of the orientation of the propelling force is described by scaled Brownian motion (sBm), identified by time-dependent diffusivity of the form D_{β}∝t^{β-1}, β>0. If β≠1, sBm is highly nonstationary and suitable to describe such nonequilibrium dynamics induced by complex media. In this paper, we provide analytical calculations and computer simulations to show that genuine anomalous diffusion emerges in the long-time regime, with a time scaling of the mean-squared displacement t^{2-β}, while ballistic transport t^{2}, characteristic of persistent motion, is found in the short-time regime. We also analyze the time dependence of the kurtosis, and the intermediate scattering function of the position distribution, as well as the propulsion autocorrelation function, which defines the effective persistence time.
Collapse
|
2
|
Di Trapani F, Franosch T, Caraglio M. Active Brownian particles in a circular disk with an absorbing boundary. Phys Rev E 2023; 107:064123. [PMID: 37464643 DOI: 10.1103/physreve.107.064123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/27/2023] [Indexed: 07/20/2023]
Abstract
We solve the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle exploring a circular region with an absorbing boundary. Using the passive Brownian particle as basis states and dealing with the activity as a perturbation, we provide a matrix representation of the Fokker-Planck operator and we express the propagator in terms of the perturbed eigenvalues and eigenfunctions. Alternatively, we show that the propagator can be expressed as a combination of the equilibrium eigenstates with weights depending only on time and on the initial conditions, and obeying exact iterative relations. Our solution allows also obtaining the survival probability and the first-passage time distribution. These latter quantities exhibit peculiarities induced by the nonequilibrium character of the dynamics; in particular, they display a strong dependence on the activity of the particle and, to a less extent, also on its rotational diffusivity.
Collapse
Affiliation(s)
- Francesco Di Trapani
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
3
|
Dutta S. Most probable paths for active Ornstein-Uhlenbeck particles. Phys Rev E 2023; 107:054130. [PMID: 37329007 DOI: 10.1103/physreve.107.054130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Fluctuations play an important role in the dynamics of stochastic systems. In particular, for small systems, the most probable thermodynamic quantities differ from their averages because of the fluctuations. Using the Onsager Machlup variational formalism we analyze the most probable paths for nonequilibrium systems, in particular, active Ornstein-Uhlenbeck particles, and investigate how the entropy production along these paths differs from the average entropy production. We investigate how much information about their nonequilibrium nature can be obtained from their extremum paths and how these paths depend on the persistence time and their swim velocities. We also look at how the entropy production along the most probable paths varies with the active noise and how it differs from the average entropy production. This study would be useful to design artificial active systems with certain target trajectories.
Collapse
Affiliation(s)
- Sandipan Dutta
- Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| |
Collapse
|
4
|
Sprenger AR, Caprini L, Löwen H, Wittmann R. Dynamics of active particles with translational and rotational inertia. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:305101. [PMID: 37059111 DOI: 10.1088/1361-648x/accd36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Inertial effects affecting both the translational and rotational dynamics are inherent to a broad range of active systems at the macroscopic scale. Thus, there is a pivotal need for proper models in the framework of active matter to correctly reproduce experimental results, hopefully achieving theoretical insights. For this purpose, we propose an inertial version of the active Ornstein-Uhlenbeck particle (AOUP) model accounting for particle mass (translational inertia) as well as its moment of inertia (rotational inertia) and derive the full expression for its steady-state properties. The inertial AOUP dynamics introduced in this paper is designed to capture the basic features of the well-established inertial active Brownian particle model, i.e. the persistence time of the active motion and the long-time diffusion coefficient. For a small or moderate rotational inertia, these two models predict similar dynamics at all timescales and, in general, our inertial AOUP model consistently yields the same trend upon changing the moment of inertia for various dynamical correlation functions.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Ledesma-Motolinía M, Carrillo-Estrada JL, Escobar A, Donado F, Castro-Villarreal P. Magnetized granular particles running and tumbling on the circle S^{1}. Phys Rev E 2023; 107:024902. [PMID: 36932580 DOI: 10.1103/physreve.107.024902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
It has been shown that a nonvibrating magnetic granular system, when fed by an alternating magnetic field, behaves with most of the distinctive physical features of active matter systems. In this work, we focus on the simplest granular system composed of a single magnetized spherical particle allocated in a quasi-one-dimensional circular channel that receives energy from a magnetic field reservoir and transduces it into a running and tumbling motion. The theoretical analysis, based on the run-and-tumble model for a circle of radius R, forecasts the existence of a dynamical phase transition between an erratic motion (disordered phase) when the characteristic persistence length of the run-and-tumble motion, ℓ_{c}<R/2, to a persistent motion (ordered phase) when ℓ_{c}>R/2. It is found that the limiting behaviors of these phases correspond to Brownian motion on the circle and a simple uniform circular motion, respectively. Furthermore, it is qualitatively shown that the smaller the magnetization of a particle, the larger the persistence length. It is so at least within the experimental limit of validity of our experiments. Our results show a very good agreement between theory and experiment.
Collapse
Affiliation(s)
- M Ledesma-Motolinía
- Instituto de Física "Luis Rivera Terrazas", Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - J L Carrillo-Estrada
- Instituto de Física "Luis Rivera Terrazas", Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - A Escobar
- Instituto de Ciencias Básicas e Ingeniería de la Universidad Autónoma del Estado de Hidalgo-AAMF, Pachuca, 42184, Hgo., México
| | - F Donado
- Instituto de Ciencias Básicas e Ingeniería de la Universidad Autónoma del Estado de Hidalgo-AAMF, Pachuca, 42184, Hgo., México
| | - Pavel Castro-Villarreal
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Carretera Emiliano Zapata, Km. 8, Rancho San Francisco, 29050 Tuxtla Gutiérrez, Chiapas, México
| |
Collapse
|
6
|
McKee D, Tabatabai AP. Mexican jumping beans exhibit diffusive motion. Phys Rev E 2023; 107:014609. [PMID: 36797892 DOI: 10.1103/physreve.107.014609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/23/2022] [Indexed: 06/18/2023]
Abstract
Organisms across many lengthscales generate specific strategies for motion that are crucial to their survival. Here, we detail the motion of a nontraditional organism, the Mexican jumping bean, where a larva encapsulated within a seed blindly moves the seed in search of shade. Using image analysis techniques, we quantitatively describe the motion of these objects as active particles. From this experimental data, we build a computational simulation that quantitatively captures the motion of these beans. And we further evaluate the effectiveness of using the observed diffusive strategy to find shade, suggesting that the random walk is an advantageous strategy for survival.
Collapse
Affiliation(s)
- Devon McKee
- Department of Physics, Seattle University, Seattle, Washington 98122, USA
| | - A Pasha Tabatabai
- Department of Physics, Seattle University, Seattle, Washington 98122, USA
| |
Collapse
|
7
|
Caraglio M, Franosch T. Analytic Solution of an Active Brownian Particle in a Harmonic Well. PHYSICAL REVIEW LETTERS 2022; 129:158001. [PMID: 36269953 DOI: 10.1103/physrevlett.129.158001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We provide an analytical solution for the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle trapped in an isotropic harmonic potential. Using the passive Brownian particle as basis states we show that the Fokker-Planck operator becomes lower diagonal, implying that the eigenvalues are unaffected by the activity. The propagator is then expressed as a combination of the equilibrium eigenstates with weights obeying exact iterative relations. We show that for the low-order correlation functions, such as the positional autocorrelation function, the recursion terminates at finite order in the Péclet number, allowing us to generate exact compact expressions and derive the velocity autocorrelation function and the time-dependent diffusion coefficient. The nonmonotonic behavior of latter quantities serves as a fingerprint of the nonequilibrium dynamics.
Collapse
Affiliation(s)
- Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
8
|
Bickmann J, Bröker S, Jeggle J, Wittkowski R. Analytical approach to chiral active systems: suppressed phase separation of interacting Brownian circle swimmers. J Chem Phys 2022; 156:194904. [DOI: 10.1063/5.0085122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We consider chirality in active systems by exemplarily studying the phase behavior of planar systems of interacting Brownian circle swimmers with a spherical shape. For this purpose, we derive a predictive field theory that is able to describe the collective dynamics of circle swimmers. The theory yields a mapping between circle swimmers and noncircling active Brownian particles and predicts that the angular propulsion of the particles leads to a suppression of their motility-induced phase separation, being in line with recent simulation results. In addition, the theory provides analytical expressions for the spinodal corresponding to the onset of motility-induced phase separation and the associated critical point as well as for their dependence on the angular propulsion of the circle swimmers. We confirm our findings by Brownian dynamics simulations. The agreement between results from theory and simulations is found to be good.
Collapse
Affiliation(s)
- Jens Bickmann
- Westfälische Wilhelms-Universität Münster Fachbereich 11 Physik, Germany
| | - Stephan Bröker
- Westfälische Wilhelms-Universität Münster Fachbereich 11 Physik, Germany
| | - Julian Jeggle
- Westfälische Wilhelms-Universität Münster Fachbereich 11 Physik, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster Fachbereich 11 Physik, Germany
| |
Collapse
|
9
|
Caprini L, Sprenger AR, Löwen H, Wittmann R. The parental active model: A unifying stochastic description of self-propulsion. J Chem Phys 2022; 156:071102. [DOI: 10.1063/5.0084213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander R. Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Caprini L, Marini Bettolo Marconi U, Wittmann R, Löwen H. Dynamics of active particles with space-dependent swim velocity. SOFT MATTER 2022; 18:1412-1422. [PMID: 35080576 DOI: 10.1039/d1sm01648b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We study the dynamical properties of an active particle subject to a swimming speed explicitly depending on the particle position. The oscillating spatial profile of the swim velocity considered in this paper takes inspiration from experimental studies based on Janus particles whose speed can be modulated by an external source of light. We suggest and apply an appropriate model of an active Ornstein Uhlenbeck particle (AOUP) to the present case. This allows us to predict the stationary properties, by finding the exact solution of the steady-state probability distribution of particle position and velocity. From this, we obtain the spatial density profile and show that its form is consistent with the one found in the framework of other popular models. The reduced velocity distribution highlights the emergence of non-Gaussianity in our generalized AOUP model which becomes more evident as the spatial dependence of the velocity profile becomes more pronounced. Then, we focus on the time-dependent properties of the system. Velocity autocorrelation functions are studied in the steady-state combining numerical and analytical methods derived under suitable approximations. We observe a non-monotonic decay in the temporal shape of the velocity autocorrelation function which depends on the ratio between the persistence length and the spatial period of the swim velocity. In addition, we numerically and analytically study the mean square displacement and the long-time diffusion coefficient. The ballistic regime, observed in the small-time region, is deeply affected by the properties of the swim velocity landscape which induces also a crossover to a sub-ballistic but superdiffusive regime for intermediate times. Finally, the long-time diffusion coefficient decreases as the amplitude of the swim velocity oscillations increases because the diffusion is mainly determined by those regions where the particles are slow.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II - Soft Matter, D-40225 Düsseldorf, Germany
| | | | - René Wittmann
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II - Soft Matter, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II - Soft Matter, D-40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Khadem SMJ, Siboni NH, Klapp SHL. Transport and phase separation of active Brownian particles in fluctuating environments. Phys Rev E 2022; 104:064615. [PMID: 35030915 DOI: 10.1103/physreve.104.064615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 11/07/2022]
Abstract
In this work, we study the dynamics of a single active Brownian particle, as well as the collective behavior of interacting active Brownian particles, in a fluctuating heterogeneous environment. We employ a variant of the diffusing diffusivity model where the equation of motion of the active particle involves a time-dependent motility and diffusivities. Within our model, those fluctuations are coupled to each other. Using analytical methods, we obtain the probability distribution function of particle displacement and its moments for a single particle. We then investigate the impact of the environmental fluctuations on the collective behavior of the active Brownian particles by means of extensive numerical simulations. Our results show that the fluctuations hinder the motility-induced phase separation, accompanied by a significant change of the density dependence of particle velocities. These effects are interpreted using our analytical results for the dynamics of a single particle.
Collapse
Affiliation(s)
- S M J Khadem
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - N H Siboni
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - S H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
12
|
Sevilla FJ, Castro-Villarreal P. Generalized persistence dynamics for active motion. Phys Rev E 2021; 104:064601. [PMID: 35030873 DOI: 10.1103/physreve.104.064601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
We analyze the statistical physics of self-propelled particles from a general theoretical framework that properly describes the most salient characteristic of active motion, persistence, in arbitrary spatial dimensions. Such a framework allows the development of a Smoluchowski-like equation for the probability density of finding a particle at a given position and time, without assuming an explicit orientational dynamics of the self-propelling velocity as Langevin-like equation-based models do. Also, the Brownian motion due to thermal fluctuations and the active one due to a general intrinsic persistent motion of the particle are taken into consideration on an equal footing. The persistence of motion is introduced in our formalism in the form of a two-time memory function, K(t,t^{'}). We focus on the consequences when K(t,t^{'})∼(t/t^{'})^{-η}exp[-Γ(t-t^{'})], Γ being the characteristic persistence time, and show that it precisely describes a variety of active motion patterns characterized by η. We find analytical expressions for the experimentally obtainable intermediate scattering function, the time dependence of the mean-squared displacement, and the kurtosis.
Collapse
Affiliation(s)
- Francisco J Sevilla
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, Ciudad de México, México
| | - Pavel Castro-Villarreal
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Carretera Emiliano Zapata, Km. 8, Rancho San Francisco, 29050 Tuxtla Gutiérrez, Chiapas, México
| |
Collapse
|
13
|
Bianucci M, Mannella R. On the determination of the optimal parameters in the CAM model. CHAOS (WOODBURY, N.Y.) 2021; 31:033113. [PMID: 33810747 DOI: 10.1063/5.0032267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
In the field of complex systems, it is often possible to arrive at some simple stochastic or chaotic Low Order Models (LOMs) exploiting the time scale separation between leading modes of interest and fast fluctuations. These LOMs, although approximate, might provide interesting qualitative insights regarding some important aspects like the average time between two extreme events. Recently, the simplest example of a LOM with multiplicative noise, namely, a linear system with a linearly state dependent noise [also called correlated additive and multiplicative (CAM) model], has been considered as archetypal for numerous phenomena that present markedly non-Gaussian statistics. We show in this paper that the determination of the parameters of a CAM model from the (few) available data is far from trivial and that the actual most likely parameters might differ substantially from the ones determined directly from a (necessarily limited) short sequence of observations. We illustrate how this problem can be tackled, at least to the extent possible, using an approach that is based on Bayes' theorem. We shall focus on a CAM modeling the El Niño Southern Oscillation but the methodology can be extended to any phenomenon that can be described by a simplified LOM similar to the one examined here and where the available sequence of data is relatively short. We conclude that indeed a Bayesian approach can fix the problem.
Collapse
Affiliation(s)
- Marco Bianucci
- Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche (ISMAR - CNR), 19032 Lerici (SP), Italy
| | | |
Collapse
|
14
|
Herrera P, Sandoval M. Maxwell-Boltzmann velocity distribution for noninteracting active matter. Phys Rev E 2021; 103:012601. [PMID: 33601560 DOI: 10.1103/physreve.103.012601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/11/2020] [Indexed: 01/24/2023]
Abstract
We theoretically and computationally find a Maxwell-Boltzmann-like velocity distribution for noninteracting active matter (NAM). To achieve this, mass and moment of inertia are incorporated into the corresponding noninteracting active Fokker-Planck equation (NAFP), thus solving for the first time, the underdamped scenario of NAM following a Fokker-Planck formalism. This time, the distribution results in a bimodal symmetric expression that contains the effect of inertia on transport properties of NAM. The analytical distribution is further compared to experiments dealing with vibrobots. A generalization of the Brinkman hierarchy for NAFP is also provided and used for systematically solving the NAFP in position space. This work is an important step toward characterizing active matter using an equivalent nonequilibrium statistical mechanics.
Collapse
Affiliation(s)
- Pedro Herrera
- Department of Physics, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Mario Sandoval
- Department of Physics, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| |
Collapse
|
15
|
Hahn S, Song S, Yang GS, Kang J, Lee KT, Sung J. Super-Gaussian, superdiffusive transport of multimode active matter. Phys Rev E 2020; 102:042612. [PMID: 33212710 DOI: 10.1103/physreve.102.042612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/02/2020] [Indexed: 11/07/2022]
Abstract
Living matter often exhibits multimode transport that switches between an active, self-propelled motion and a seemingly passive, random motion. Here, we investigate an exactly solvable model of multimode active matter, such as living cells and motor proteins, which alternatingly undergoes active and passive motion. Our model study shows that the reversible transition between a passive mode and an active mode causes super-Gaussian transport dynamics, observed in various experiments. We find the non-Gaussian character of the matter's displacement distribution is essentially determined by the population ratio between active and passive motion. Interestingly, under a certain population ratio of the active and passive modes, the displacement distribution changes from sub-Gaussian to super-Gaussian as time increases. The mean-square displacement of our model exhibits transient superdiffusive dynamics, yet recovers diffusive behavior at both the short- and long-time limits. We finally generalize our model to encompass complex, multimode active matter in an arbitrary spatial dimension.
Collapse
Affiliation(s)
- Seungsoo Hahn
- Da Vinci College of General Education, Chung-Ang University, Seoul 06974, Korea.,Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea
| | - Sanggeun Song
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea.,Department of Chemistry, Chung-Ang University, Seoul 06974, Korea.,National Institute of Innovative Functional Imaging, Chung-Ang University, Seoul 06974, Korea
| | - Gil-Suk Yang
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea.,National Institute of Innovative Functional Imaging, Chung-Ang University, Seoul 06974, Korea
| | - Jingyu Kang
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea.,Department of Chemistry, Chung-Ang University, Seoul 06974, Korea.,National Institute of Innovative Functional Imaging, Chung-Ang University, Seoul 06974, Korea
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jaeyoung Sung
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea.,Department of Chemistry, Chung-Ang University, Seoul 06974, Korea.,National Institute of Innovative Functional Imaging, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
16
|
Herrera P, Apaza L, Sandoval M. One-dimensional displacement of active matter on curved substrates. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1711974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Pedro Herrera
- Department of Physics, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Leonardo Apaza
- Department of Physics, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Mario Sandoval
- Department of Physics, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| |
Collapse
|
17
|
Petrelli I, Cugliandolo LF, Gonnella G, Suma A. Effective temperatures in inhomogeneous passive and active bidimensional Brownian particle systems. Phys Rev E 2020; 102:012609. [PMID: 32794963 DOI: 10.1103/physreve.102.012609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/25/2020] [Indexed: 05/15/2023]
Abstract
We study the stationary dynamics of an active interacting Brownian particle system. We measure the violations of the fluctuation dissipation theorem, and the corresponding effective temperature, in a locally resolved way. Quite naturally, in the homogeneous phases the diffusive properties and effective temperature are also homogeneous. Instead, in the inhomogeneous phases (close to equilibrium and within the MIPS sector) the particles can be separated in two groups with different diffusion properties and effective temperatures. Notably, at fixed activity strength the effective temperatures in the two phases remain distinct and approximately constant within the MIPS region, with values corresponding to the ones of the whole system at the boundaries of this sector of the phase diagram. We complement the study of the globally averaged properties with the theoretical and numerical characterization of the fluctuation distributions of the single-particle diffusion, linear response, and effective temperature in the homogeneous and inhomogeneous phases. We also distinguish the behavior of the (time-delayed) effective temperature from the (instantaneous) kinetic temperature, showing that the former is independent of the friction coefficient.
Collapse
Affiliation(s)
- Isabella Petrelli
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - Leticia F Cugliandolo
- Sorbonne Université, Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589, 4 Place Jussieu, 75252 Paris Cedex 05, France
- Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - Antonio Suma
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
18
|
Dulaney AR, Brady JF. Waves in active matter: The transition from ballistic to diffusive behavior. Phys Rev E 2020; 101:052609. [PMID: 32575299 DOI: 10.1103/physreve.101.052609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/23/2020] [Indexed: 01/19/2023]
Abstract
We highlight the unique wavelike character observed in the relaxation dynamics of active systems via a Smoluchowski based theoretical framework and Brownian dynamic simulations. Persistent swimming motion results in wavelike dynamics until the advective swim displacements become sufficiently uncorrelated, at which point the motion becomes a random walk process characterized by a swim diffusivity, D^{swim}=U_{0}^{2}τ_{R}/[d(d-1)], dependent on the speed of swimming U_{0}, reorientation time τ_{R}, and reorientation dimension d. This change in behavior is described by a telegraph equation, which governs the transition from ballistic wavelike motion to long-time diffusive motion. We study the relaxation of active Brownian particles from an instantaneous source, and provide an explanation for the nonmonotonicity observed in the intermediate scattering function. Using our simple kinetic model we provide the density distribution for the diffusion of active particles released from a line source as a function of time, position, and the ratio of the activity to thermal energy. We extend our analysis to include the effects of an external field on particle spreading to further understand how reorientation events in the active force vector affect relaxation. The strength of the applied external field is shown to be inversely proportional to the decay of the wavelike structure. Our theoretical description for the evolution of the number density agrees with Brownian dynamic simulation data.
Collapse
Affiliation(s)
- A R Dulaney
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - J F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
19
|
Shee A, Dhar A, Chaudhuri D. Active Brownian particles: mapping to equilibrium polymers and exact computation of moments. SOFT MATTER 2020; 16:4776-4787. [PMID: 32409794 DOI: 10.1039/d0sm00367k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is well known that the path probabilities of Brownian motion correspond to the equilibrium configurational probabilities of flexible Gaussian polymers, while those of active Brownian motion correspond to in-extensible semiflexible polymers. Here we investigate the properties of the equilibrium polymer that corresponds to the trajectories of particles acted on simultaneously by both Brownian and active noise. Through this mapping we can see interesting crossovers in the mechanical properties of the polymer with changing contour length. The polymer end-to-end distribution exhibits Gaussian behaviour for short lengths, which changes to the form of semiflexible filaments at intermediate lengths, to finally go back to a Gaussian form for long contour lengths. By performing a Laplace transform of the governing Fokker-Planck equation of the active Brownian particle, we discuss a direct method to derive exact expressions for all the moments of the relevant dynamical variables, in arbitrary dimensions. These are verified via numerical simulations and used to describe interesting qualitative features such as, for example, dynamical crossovers. Finally we discuss the kurtosis of the ABP's position, which we compute exactly, and show that it can be used to differentiate between active Brownian particles and the active Ornstein-Uhlenbeck process.
Collapse
Affiliation(s)
- Amir Shee
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
| | | | | |
Collapse
|
20
|
Malakar K, Das A, Kundu A, Kumar KV, Dhar A. Steady state of an active Brownian particle in a two-dimensional harmonic trap. Phys Rev E 2020; 101:022610. [PMID: 32168649 DOI: 10.1103/physreve.101.022610] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 01/23/2020] [Indexed: 11/07/2022]
Abstract
We find an exact series solution for the steady-state probability distribution of a harmonically trapped active Brownian particle in two dimensions in the presence of translational diffusion. This series solution allows us to efficiently explore the behavior of the system in different parameter regimes. Identifying "active" and "passive" regimes, we predict a surprising re-entrant active-to-passive transition with increasing trap stiffness. Our numerical simulations validate this finding. We discuss various interesting limiting cases wherein closed-form expressions for the distributions can be obtained.
Collapse
Affiliation(s)
- Kanaya Malakar
- Presidency University, Kolkata 700073, India.,Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Arghya Das
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Anupam Kundu
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - K Vijay Kumar
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Abhishek Dhar
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| |
Collapse
|
21
|
Apaza L, Sandoval M. Homotopy analysis and Padé approximants applied to active Brownian motion. Phys Rev E 2020; 101:032103. [PMID: 32290001 DOI: 10.1103/physreve.101.032103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/15/2020] [Indexed: 06/11/2023]
Abstract
We apply the homotopy analysis method to the motion of noninteracting active Brownian particles (ABPs) under a general situation such as in the presence of external fields, external torques, or even moving on non-Euclidean geometries. Within this framework, a general expression as a series solution in time for the probability density function (PDF) satisfying the Fokker-Planck (FP) equation is elucidated. Using the latter PDF, their respective mean values (first and second moments) are also found in general. Applications of the present technique are offered by solving classic ABP situations, namely free noninteracting ABPs, ABPs under a Poiseuille flow, and even ABPs confined to move on any Riemannian manifold. To improve the convergence of the obtained series solution for each situation, Padé approximants are incorporated. It is worth mentioning that the offered methodology may exactly be applied to other fields such as chemistry, biology, or econophysics where a FP equation governs the system.
Collapse
Affiliation(s)
- Leonardo Apaza
- Department of Physics, Universidad Autonoma, Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Mario Sandoval
- Department of Physics, Universidad Autonoma, Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| |
Collapse
|
22
|
Abstract
The diffusion in two dimensions of noninteracting active particles that follow an arbitrary motility pattern is considered for analysis. A Fokker-Planck-like equation is generalized to take into account an arbitrary distribution of scattered angles of the swimming direction, which encompasses the pattern of active motion of particles that move at constant speed. An exact analytical expression for the marginal probability density of finding a particle on a given position at a given instant, independently of its direction of motion, is provided, and a connection with a generalized diffusion equation is unveiled. Exact analytical expressions for the time dependence of the mean-square displacement and of the kurtosis of the distribution of the particle positions are presented. The analysis is focused in the intermediate-time regime, where the effects of the specific pattern of active motion are conspicuous. For this, it is shown that only the expectation value of the first two harmonics of the scattering angle of the direction of motion are needed. The effects of persistence and of circular motion are discussed for different families of distributions of the scattered direction of motion.
Collapse
Affiliation(s)
- Francisco J Sevilla
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, Ciudad de México, México
| |
Collapse
|
23
|
Caprini L, Hernández-García E, López C, Marini Bettolo Marconi U. A comparative study between two models of active cluster crystals. Sci Rep 2019; 9:16687. [PMID: 31723160 PMCID: PMC6853940 DOI: 10.1038/s41598-019-52420-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
We study a system of active particles with soft repulsive interactions that lead to an active cluster-crystal phase in two dimensions. We use two different modelizations of the active force - Active Brownian particles (ABP) and Ornstein-Uhlenbeck particles (AOUP) - and focus on analogies and differences between them. We study the different phases appearing in the system, in particular, the formation of ordered patterns drifting in space without being altered. We develop an effective description which captures some properties of the stable clusters for both ABP and AOUP. As an additional point, we confine such a system in a large channel, in order to study the interplay between the cluster crystal phase and the well-known accumulation near the walls, a phenomenology typical of active particles. For small activities, we find clusters attached to the walls and deformed, while for large values of the active force they collapse in stripes parallel to the walls.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Gran Sasso Science Institute (GSSI), Via. F. Crispi 7, 67100, L'Aquila, Italy.
| | - Emilio Hernández-García
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain
| | - Cristóbal López
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain
| | | |
Collapse
|
24
|
Vachier J, Mazza MG. Dynamics of sedimenting active Brownian particles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:11. [PMID: 30687883 DOI: 10.1140/epje/i2019-11770-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
We investigate the stochastic dynamics of one sedimenting active Brownian particle in three dimensions under the influence of gravity and passive fluctuations in the translational and rotational motion. We present an analytical solution of the Fokker-Planck equation for the stochastic process which allows us to describe the dynamics of one active Brownian particle in three dimensions. We address the time evolution of the density, the polarization, and the steady-state solution. We also perform Brownian dynamics simulations and study the effect of the activity of the particles on their collective motion. These results qualitatively agree with our model. Finally, we compare our results with experiments (J. Palacci et al., Phys. Rev. Lett. 105, 088304 (2010)) and find very good agreement.
Collapse
Affiliation(s)
- Jérémy Vachier
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany.
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, LE11 3TU, Loughborough, Leicestershire, UK.
| |
Collapse
|
25
|
Khadem SMJ, Klapp SHL. Delayed feedback control of active particles: a controlled journey towards the destination. Phys Chem Chem Phys 2019; 21:13776-13787. [PMID: 31210204 DOI: 10.1039/c9cp00495e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We explore theoretically the navigation of an active particle based on delayed feedback control. The delayed feedback enters in our expression for the particle orientation which, for an active particle, determines (up to noise) the direction of motion in the next time step. Here we estimate the orientation by comparing the delayed position of the particle with the actual one. This method does not require any real-time monitoring of the particle orientation and may thus be relevant also for controlling sub-micron sized particles, where the imaging process is not easily feasible. We apply the delayed feedback strategy to two experimentally relevant situations, namely, optical trapping and photon nudging. To investigate the performance of our strategy, we calculate the mean arrival time analytically (exploiting a small-delay approximation) and by simulations.
Collapse
Affiliation(s)
- S M J Khadem
- Institute of Theoretical Physics, Technical University Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | | |
Collapse
|
26
|
Mathijssen AJTM, Guzmán-Lastra F, Kaiser A, Löwen H. Nutrient Transport Driven by Microbial Active Carpets. PHYSICAL REVIEW LETTERS 2018; 121:248101. [PMID: 30608743 DOI: 10.1103/physrevlett.121.248101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 06/09/2023]
Abstract
We demonstrate that active carpets of bacteria or self-propelled colloids generate coherent flows towards the substrate, and propose that these currents provide efficient pathways to replenish nutrients that feed back into activity. A full theory is developed in terms of gradients in the active matter density and velocity, and applied to bacterial turbulence, topological defects and clustering. Currents with complex spatiotemporal patterns are obtained, which are tunable through confinement. Our findings show that diversity in carpet architecture is essential to maintain biofunctionality.
Collapse
Affiliation(s)
- Arnold J T M Mathijssen
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Francisca Guzmán-Lastra
- Facultad de Ciencias, Universidad Mayor, Av. Manuel Montt 367, Providencia, Santiago 7500994, Chile
- Departamento de Física, FCFM Universidad de Chile, Beauchef 850, Santiago 8370448, Chile
| | - Andreas Kaiser
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Abstract
We formulate the dynamics of overdamped Brownian active particles (swimmers) moving on any Riemannian 2-manifold. To characterize such dynamics at short times, an analytical expression for the variance of swimmers diffusing on any Riemmanian 2-manifold is derived. To show the generality of the present work, we apply the latter dynamics to swimmers moving on the surface of a spheroid and a torus, and offer analytical expressions for both their long-time variances and steady angular marginal probability density functions. Finally, Brownian dynamics simulations are used to validate our theoretical findings.
Collapse
Affiliation(s)
- Leonardo Apaza
- Faculty of Pure and Natural Sciences, Universidad Mayor de San Andres, La Paz, Bolivia
| | | |
Collapse
|
28
|
Noetel J, Freitas VLS, Macau EEN, Schimansky-Geier L. Optimal noise in a stochastic model for local search. Phys Rev E 2018; 98:022128. [PMID: 30253564 DOI: 10.1103/physreve.98.022128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Indexed: 11/07/2022]
Abstract
We develop a prototypical stochastic model for a local search around a given home. The stochastic dynamic model is motivated by experimental findings of the motion of a fruit fly around a given spot of food but will generally describe the local search behavior. The local search consists of a sequence of two epochs. In the first the searcher explores new space around the home, whereas it returns to the home during the second epoch. In the proposed two-dimensional model both tasks are described by the same stochastic dynamics. The searcher moves with constant speed and its angular dynamics is driven by a symmetric α-stable noise source. The latter stands for the uncertainty to decide the new direction of motion. The main ingredient of the model is the nonlinear interaction dynamics of the searcher with its home. In order to determine the new heading direction, the searcher has to know the actual angles of its position to the home and of the heading vector. A bound state to the home is realized by a permanent switch of a repulsive and attractive forcing of the heading direction from the position direction corresponding to search and return epochs. Our investigation elucidates the analytic tractability of the deterministic and stochastic dynamics. Noise transforms the conservative deterministic dynamics into a dissipative one of the moments. The noise enables a faster finding of a target distinct from the home with optimal intensity. This optimal situation is related to the noise-dependent relaxation time. It is uniquely defined for all α and distinguishes between the stochastic dynamics before and after its value. For times large compared to this, we derive the corresponding Smoluchowski equation and find diffusive spreading of the searcher in the space. We report on the qualitative agreement with the experimentally observed spatial distribution, noisy oscillatory return times, and spatial autocorrelation function of the fruit fly. However, as a result of its simplicity, the model aims to reproduce the local search behavior of other units during their exploration of surrounding space and their quasiperiodic return to a home.
Collapse
Affiliation(s)
- J Noetel
- Institute of Physics, Humboldt University at Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - V L S Freitas
- National Institute for Space Research, 12227-010 São José dos Campos, São Paulo, Brazil
| | - E E N Macau
- National Institute for Space Research, 12227-010 São José dos Campos, São Paulo, Brazil.,Federal University of Sao Paulo, 12247-014 São José dos Campos, São Paulo, Brazil
| | - L Schimansky-Geier
- Institute of Physics, Humboldt University at Berlin, Newtonstraße 15, 12489 Berlin, Germany.,Berlin Bernstein Center for Computational Neuroscience, Humboldt University at Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
29
|
Kurzthaler C, Devailly C, Arlt J, Franosch T, Poon WCK, Martinez VA, Brown AT. Probing the Spatiotemporal Dynamics of Catalytic Janus Particles with Single-Particle Tracking and Differential Dynamic Microscopy. PHYSICAL REVIEW LETTERS 2018; 121:078001. [PMID: 30169062 DOI: 10.1103/physrevlett.121.078001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/01/2018] [Indexed: 05/25/2023]
Abstract
We demonstrate differential dynamic microscopy and particle tracking for the characterization of the spatiotemporal behavior of active Janus colloids in terms of the intermediate scattering function (ISF). We provide an analytical solution for the ISF of the paradigmatic active Brownian particle model and find striking agreement with experimental results from the smallest length scales, where translational diffusion and self-propulsion dominate, up to the largest ones, which probe effective diffusion due to rotational Brownian motion. At intermediate length scales, characteristic oscillations resolve the crossover between directed motion to orientational relaxation and allow us to discriminate active Brownian motion from other reorientation processes, e.g., run-and-tumble motion. A direct comparison to theoretical predictions reliably yields the rotational and translational diffusion coefficients of the particles, the mean and width of their speed distribution, and the temporal evolution of these parameters.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Clémence Devailly
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Jochen Arlt
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Wilson C K Poon
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Vincent A Martinez
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Aidan T Brown
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
30
|
Abstract
A theoretical analysis of active motion on curved surfaces is presented in terms of a generalization of the telegrapher equation. Such a generalized equation is explicitly derived as the polar approximation of the hierarchy of equations obtained from the corresponding Fokker-Planck equation of active particles diffusing on curved surfaces. The general solution to the generalized telegrapher equation is given for a pulse with vanishing current as initial data. Expressions for the probability density and the mean squared geodesic displacement are given in the limit of weak curvature. As an explicit example of the formulated theory, the case of active motion on the sphere is presented, where oscillations observed in the mean squared geodesic displacement are explained.
Collapse
Affiliation(s)
- Pavel Castro-Villarreal
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Carretera Emiliano Zapata, Kilómetro 8, Rancho San Francisco, 29050 Tuxtla Gutiérrez, Chiapas, México
| | - Francisco J Sevilla
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000, Ciudad de México, México
| |
Collapse
|
31
|
Hermann S, Schmidt M. Active ideal sedimentation: exact two-dimensional steady states. SOFT MATTER 2018; 14:1614-1621. [PMID: 29411843 DOI: 10.1039/c7sm02515g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.
Collapse
Affiliation(s)
- Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany.
| | | |
Collapse
|
32
|
Hasnain J, Menzl G, Jungblut S, Dellago C. Crystallization and flow in active patch systems. SOFT MATTER 2017; 13:930-936. [PMID: 28094380 DOI: 10.1039/c6sm01898j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Based upon recent experiments in which Janus particles are made into active swimmers by illuminating them with laser light, we explore the effect of applying a light pattern on the sample, thereby creating activity inducing zones or active patches. We simulate a system of interacting Brownian diffusers that become active swimmers when moving inside an active patch and analyze the structure and dynamics of the ensuing stationary state. We find that, in some respects, the effect of spatially inhomogeneous activity is qualitatively similar to a temperature gradient. For asymmetric patches, however, this analogy breaks down because the ensuing stationary state is specific to partial active motion.
Collapse
Affiliation(s)
- Jaffar Hasnain
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
The diffusion of chiral active Brownian particles in three-dimensional space is studied analytically, by consideration of the corresponding Fokker-Planck equation for the probability density of finding a particle at position x and moving along the direction v[over ̂] at time t, and numerically, by the use of Langevin dynamics simulations. The analysis is focused on the marginal probability density of finding a particle at a given location and at a given time (independently of its direction of motion), which is found from an infinite hierarchy of differential-recurrence relations for the coefficients that appear in the multipole expansion of the probability distribution, which contains the whole kinematic information. This approach allows the explicit calculation of the time dependence of the mean-squared displacement and the time dependence of the kurtosis of the marginal probability distribution, quantities from which the effective diffusion coefficient and the "shape" of the positions distribution are examined. Oscillations between two characteristic values were found in the time evolution of the kurtosis, namely, between the value that corresponds to a Gaussian and the one that corresponds to a distribution of spherical shell shape. In the case of an ensemble of particles, each one rotating around a uniformly distributed random axis, evidence is found of the so-called effect "anomalous, yet Brownian, diffusion," for which particles follow a non-Gaussian distribution for the positions yet the mean-squared displacement is a linear function of time.
Collapse
Affiliation(s)
- Francisco J Sevilla
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, México D.F., Mexico
| |
Collapse
|
34
|
Intermediate scattering function of an anisotropic active Brownian particle. Sci Rep 2016; 6:36702. [PMID: 27830719 PMCID: PMC5378927 DOI: 10.1038/srep36702] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/19/2016] [Indexed: 11/08/2022] Open
Abstract
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.
Collapse
|
35
|
Zeng C, Zeng J, Liu F, Wang H. Impact of correlated noise in an energy depot model. Sci Rep 2016; 6:19591. [PMID: 26786478 PMCID: PMC4726301 DOI: 10.1038/srep19591] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/15/2015] [Indexed: 11/09/2022] Open
Abstract
Based on the depot model of the motion of active Brownian particles (ABPs), the impact of cross-correlated multiplicative and additive noises has been investigated. Using a nonlinear Langevin approach, we discuss a new mechanism for the transport of ABPs in which the energy originates from correlated noise. It is shown that the correlation between two types of noise breaks the symmetry of the potential to generate motion of the ABPs with a net velocity. The absolute maximum value of the mean velocity depends on correlated noise or multiplicative noise, whereas a monotonic decrease in the mean velocity occurs with additive noise. In the case of no correlation, the ABPs undergo pure diffusion with zero mean velocity, whereas in the case of perfect correlation, the ABPs undergo pure drift with zero diffusion. This shows that the energy stemming from correlated noise is primarily converted to kinetic energy of the intrawell motion and is eventually dissipated in drift motion. A physical explanation of the mechanisms for noise-driven transport of ABPs is derived from the effective potential of the Fokker-Planck equation.
Collapse
Affiliation(s)
- Chunhua Zeng
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Science, Kunming University of Science and Technology, Kunming 650093, P.R. China.,Department of Physics, Nanjing University, Nanjing 210093, P.R. China
| | - Jiakui Zeng
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Science, Kunming University of Science and Technology, Kunming 650093, P.R. China
| | - Feng Liu
- Department of Physics, Nanjing University, Nanjing 210093, P.R. China
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Science, Kunming University of Science and Technology, Kunming 650093, P.R. China
| |
Collapse
|