1
|
Vani N, Escudier S, Sauret A. Influence of the solid fraction on the clogging by bridging of suspensions in constricted channels. SOFT MATTER 2022; 18:6987-6997. [PMID: 36069637 DOI: 10.1039/d2sm00962e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Clogging can occur whenever a suspension of particles flows through a confined system. The formation of clogs is often correlated to a reduction in the cross-section of the channel. In this study, we consider the clogging by bridging, i.e., through the formation of a stable arch of particles at a constriction that hinders the transport of particles downstream of the clog. To characterize the role of the volume fraction of the suspension on the clogging dynamics, we study the flow of particulate suspensions through 3D-printed millifluidic devices. We systematically characterize the bridging of non-Brownian particles in a quasi-bidimensional system in which we directly visualize and track the particles as they flow and form arches at a constriction. We report the conditions for clogging by bridging when varying the constriction width to particle diameter ratio for different concentrations of the particles in suspension. We then discuss our results using a stochastic model to rationalize the influence of solid fraction on the probability of clogging. Understanding the mechanisms and conditions of clog formation is an important step for optimizing engineering design and developing more reliable dispensing systems.
Collapse
Affiliation(s)
- Nathan Vani
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Sacha Escudier
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Alban Sauret
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
2
|
Zhang S, Ge W, Chen G, Liu Z, Liu T, Wen L, Liu C. Numerical investigation on the clogging-collapsing events in granular discharge. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Fu H, Wu P, Shi S, Jiang M, Zhang S, Wang L. Size segregation of disk particle in two-dimensional chute. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:54. [PMID: 35699803 DOI: 10.1140/epje/s10189-022-00207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Size segregation will lead to stratification of a particle system. At present, people have not fully understood the segregation mechanism. In this work, we have studied the size segregation behavior of two-component disk particles in chute flows. The effects of particle size ratio η, particle density ρ, static friction coefficient μ and chute angle α on size segregation are discussed. We use the discrete element method to simulate and calculate the force of disk large particles during segregation. Results show that the 'squeeze expulsion' mechanism plays a key role in the size segregation of a disk particle flow. We establish a physical model of 'squeeze expulsion' of disk particles and obtain the conditions for the formation of 'squeeze expulsion' mechanism.
Collapse
Affiliation(s)
- Heping Fu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Ping Wu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China.
| | - Shanshan Shi
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Mengxiang Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Shiping Zhang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Li Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
4
|
A study of ellipsoidal and spherical particle flow, clogging and unclogging dynamics. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Discharge Flow of Spherical Particles from a Cylindrical Bin: Experiment and DEM Simulations. Processes (Basel) 2021. [DOI: 10.3390/pr9111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of the DEM simulations of the outflow of wooden spheres from a flat-bottomed container was reported, considering the maximum diameter to arrest the flow. Numerical simulations of the discharge process were performed, and the micro-mechanics of the discharged particles were described. The effect of the sliding friction coefficient between particles, rolling friction coefficient, and modulus of elasticity of particles on the clogging process was investigated. The results of the simulations of the mass flow rate of spheres have shown a fairly close agreement with the experimental results. The real particles of wood were not perfectly spherical, their properties were anisotropic, and their frictional properties were non-homogenously distributed on the surface. Nevertheless, these deviations from ideal conditions did not produce a considerable discrepancy in the results. No direct relationship between the interparticle friction and the clogging was found; however, a relationship between the stability of the dome formed at flow arrest and the rolling friction was observed. An increase in Young’s modulus of particles by two orders of magnitude did not affect the clogging process, but a slightly higher probability of clogging was found for softer particles.
Collapse
|
6
|
Effects of vibrations on tilted silo discharge. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Garcimartín A, Guerrero BV, Nicolas A, Barbosa da Silva RC, Zuriguel I. On the broad tails in breaking time distributions of vibrated clogging arches. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124903009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Flowing grains can clog an orifice by developing arches, an undesirable event in many cases. Several strategies have been put forward to avoid this. One of them is to vibrate the system in order to undo the clogging. Nevertheless, the time taken to break an arch under a constant vibration has a distribution displaying a heavy tail. This can lead to a situation where the average breaking time is not well defined. Moreover, it has been observed in some experiments that these tails tend to flatten for very long times, exacerbating the problem. Here we will review two conceptual frameworks that have been proposed to understand the phenomenon and discuss their physical implications.
Collapse
|
8
|
Du J, Liu C, Wang C, Wu P, Ding Y, Wang L. Discharge of granular materials in a hemispherical bottom silo under vertical vibration. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Liu H, Jia F, Xiao Y, Han Y, Li G, Li A, Bai S. Numerical analysis of the effect of the contraction rate of the curved hopper on flow characteristics of the silo discharge. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Guerrero BV, Chakraborty B, Zuriguel I, Garcimartín A. Nonergodicity in silo unclogging: Broken and unbroken arches. Phys Rev E 2019; 100:032901. [PMID: 31639941 DOI: 10.1103/physreve.100.032901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 11/07/2022]
Abstract
We report an experiment on the unclogging dynamics in a two-dimensional silo submitted to a sustained gentle vibration. We find that arches present a jerking motion where rearrangements in the positions of their beads are interspersed with quiescent periods. This behavior occurs for both arches that break down and those that withstand the external perturbation: Arches evolve until they either collapse or get trapped in a stable configuration. This evolution is described in terms of a scalar variable characterizing the arch shape that can be modeled as a continuous-time random walk. By studying the diffusivity of this variable, we show that the unclogging is a weakly nonergodic process. Remarkably, arches that do not collapse explore different configurations before settling in one of them and break ergodicity much in the same way than arches that break down.
Collapse
Affiliation(s)
- B V Guerrero
- Dep. Física y Mat. Apl., Fac. Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - B Chakraborty
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - I Zuriguel
- Dep. Física y Mat. Apl., Fac. Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - A Garcimartín
- Dep. Física y Mat. Apl., Fac. Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| |
Collapse
|
11
|
Han Y, Jia F, Li G, Liu H, Li J, Chen P. Numerical analysis of flow pattern transition in a conical silo with ellipsoid particles. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Navarro-Brull FJ, Teixeira AR, Giri G, Gómez R. Enabling low power acoustics for capillary sonoreactors. ULTRASONICS SONOCHEMISTRY 2019; 56:105-113. [PMID: 31101244 DOI: 10.1016/j.ultsonch.2019.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Capillary reactors demonstrate outstanding potential for on-demand flow chemistry applications. However, non-uniform distribution of multiphase flows, poor solid handling, and the risk of clogging limit their usability for continuous manufacturing. While ultrasonic irradiation has been traditionally applied to address some of these limitations, their acoustic efficiency, uniformity and scalability to larger reactor systems are often disregarded. In this work, high-speed microscopic imaging reveals how cavitation-free ultrasound can unclog and prevent the blockage of capillary reactors. Modeling techniques are then adapted from traditional acoustic designs and applied to simulate and prototype sonoreactors with wider and more uniform sonication areas. Blade-, block- and cylindrical shape sonotrodes are optimized to accommodate longer capillary lengths in sonoreactors resonating at 28 kHz. Finally, a novel helicoidal capillary sonoreactor is proposed to potentially deal with a high concentration of solid particles in miniaturized flow chemistry. The acoustic designs and first principle rationalization presented here offer a transformative step forward in the scale-up of efficient capillary sonoreactors.
Collapse
Affiliation(s)
- Francisco J Navarro-Brull
- Institut Universitari d'Electroquímica i Departament de Química Física, Universitat d'Alacant, Apartat 99, E-03080 Alicante, Spain
| | - Andrew R Teixeira
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States
| | - Gaurav Giri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, United States
| | - Roberto Gómez
- Institut Universitari d'Electroquímica i Departament de Química Física, Universitat d'Alacant, Apartat 99, E-03080 Alicante, Spain.
| |
Collapse
|
13
|
López-Rodríguez D, Gella D, To K, Maza D, Garcimartín A, Zuriguel I. Effect of hopper angle on granular clogging. Phys Rev E 2019; 99:032901. [PMID: 30999399 DOI: 10.1103/physreve.99.032901] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 11/07/2022]
Abstract
We present experimental results of the effect of the hopper angle on the clogging of grains discharged from a two-dimensional silo under gravity action. We observe that the probability of clogging can be reduced by three orders of magnitude by increasing the hopper angle. In addition, we find that for very large hopper angles, the avalanche size (〈s〉) grows with the outlet size (D) stepwise, in contrast to the case of a flat-bottom silo for which 〈s〉 grows smoothly with D. This surprising effect is originated from the static equilibrium requirement imposed by the hopper geometry to the arch that arrests the flow. The hopper angle sets the bounds of the possible angles of the vectors connecting consecutive beads in the arch. As a consequence, only a small and specific portion of the arches that jam a flat-bottom silo can survive in hoppers.
Collapse
Affiliation(s)
- Diego López-Rodríguez
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Diego Gella
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Kiwing To
- Institute of Physics, Academia Sinica, Taipei 115, Taiwan
| | - Diego Maza
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Angel Garcimartín
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Iker Zuriguel
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| |
Collapse
|
14
|
Vamsi Krishna Reddy A, Kumar S, Anki Reddy K, Talbot J. Granular silo flow of inelastic dumbbells: Clogging and its reduction. Phys Rev E 2018; 98:022904. [PMID: 30253544 DOI: 10.1103/physreve.98.022904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 06/08/2023]
Abstract
We study the discharge of inelastic, two-dimensional dumbbells through an orifice in the bottom wall of a silo using discrete element method (DEM) simulations. As with spherical particles, clogging may occur due to the formation of arches of particles around the orifice. The clogging probability decreases with increasing orifice width in both cases. For a given width, however, the clogging probability is much higher for the nonspherical particles due to their arbitrary orientations and the possibility of geometrical interlocking. We also examine the effect of placing a fixed, circular obstacle above the orifice. The clogging probability depends strongly on the vertical and lateral position of the obstacle, as well as its size. By suitably placing the obstacle the clogging probability can be significantly reduced compared to a system with no obstacle. We attempt to elucidate the clogging reduction mechanism by examining the packing fraction, granular temperature, and velocity distributions of the particles in the vicinity of the orifice.
Collapse
Affiliation(s)
- A Vamsi Krishna Reddy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sonu Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Julian Talbot
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France
| |
Collapse
|
15
|
Merrigan C, Birwa SK, Tewari S, Chakraborty B. Ergodicity breaking dynamics of arch collapse. Phys Rev E 2018; 97:040901. [PMID: 29758696 DOI: 10.1103/physreve.97.040901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 11/07/2022]
Abstract
Flows in hoppers and silos are susceptible to clogging due to the formation of arches at the exit. The failure of these arches is the key to reinitiation of flow, yet the physical mechanism of failure is not well understood. Experiments on vibrated hoppers exhibit a broad distribution of the duration of clogs. Using numerical simulations of a hopper in two dimensions, we show that arches become trapped in locally stable shapes that are explored dynamically under vibrations. The shape dynamics, preceding failure, break ergodicity and can be modeled as a continuous-time random walk with a broad distribution of waiting, or trapping, times. We argue that arch failure occurs as a result of this random walk crossing a stability boundary, which is a first-passage process that naturally gives rise to a broad distribution of unclogging times.
Collapse
Affiliation(s)
- Carl Merrigan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Sumit Kumar Birwa
- TIFR International Center for Theoretical Sciences, Shivakote, Bengaluru 560089, India
| | - Shubha Tewari
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Bulbul Chakraborty
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
16
|
Nicolas A, Garcimartín Á, Zuriguel I. Trap Model for Clogging and Unclogging in Granular Hopper Flows. PHYSICAL REVIEW LETTERS 2018; 120:198002. [PMID: 29799232 DOI: 10.1103/physrevlett.120.198002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 06/08/2023]
Abstract
Granular flows through narrow outlets may be interrupted by the formation of arches or vaults that clog the exit. These clogs may be destroyed by vibrations. A feature which remains elusive is the broad distribution p(τ) of clog lifetimes τ measured under constant vibrations. Here, we propose a simple model for arch breaking, in which the vibrations are formally equivalent to thermal fluctuations in a Langevin equation; the rupture of an arch corresponds to the escape from an energy trap. We infer the distribution of trap depths from experiments made in two-dimensional hoppers. Using this distribution, we show that the model captures the empirically observed heavy tails in p(τ). These heavy tails flatten at large τ, consistently with experimental observations under weak vibrations. But, here, we find that this flattening is systematic, which casts doubt on the ability of gentle vibrations to restore a finite outflow forever. The trap model also replicates recent results on the effect of increasing gravity on the statistics of clog formation in a static silo. Therefore, the proposed framework points to a common physical underpinning to the processes of clogging and unclogging, despite their different statistics.
Collapse
Affiliation(s)
- Alexandre Nicolas
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Ángel Garcimartín
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - Iker Zuriguel
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| |
Collapse
|
17
|
Guerrero BV, Pugnaloni LA, Lozano C, Zuriguel I, Garcimartín A. Slow relaxation dynamics of clogs in a vibrated granular silo. Phys Rev E 2018; 97:042904. [PMID: 29758701 DOI: 10.1103/physreve.97.042904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 06/08/2023]
Abstract
We experimentally explore the vibration-induced unclogging of arches halting the flow in a two-dimensional silo. The endurance of arches is determined by carrying out a survival analysis of their breaking times. By analyzing the dynamics of two morphological variables, we demonstrate that arches evolve toward less regular structures and it seems that there may exist a certain degree of irregularity that the arch reaches before collapsing. Moreover, we put forward that σ (the standard deviation of all angles between consecutive beads) describes faithfully the morphological evolution of the arch. Focusing on long-lasting arches, we study σ calculating its two-time autocorrelation function and its mean-squared displacement. In particular, the apparent logarithmic increase of the correlation and the decrease of the mean-squared displacement of σ when the waiting time is increased reveal a slowing down of the dynamics. This behavior is a clear hallmark of aging phenomena and confirms the lack of ergodicity in the unclogging dynamics. Our findings provide new insights on how an arch tends to destabilize and how the probability that it breaks with a long sustained vibration decreases with time.
Collapse
Affiliation(s)
- B V Guerrero
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - L A Pugnaloni
- Departamento de Ingeniería Mecánica, Facultad Regional La Plata, Universidad Tecnológica Nacional, CONICET, 1900 La Plata, Argentina
| | - C Lozano
- Fachbereich Physik, Universität Konstanz, Konstanz D-78457, Germany
| | - I Zuriguel
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - A Garcimartín
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| |
Collapse
|
18
|
Guerrero B, Lozano C, Zuriguel I, Garcimartín A. Dynamics of breaking arches under a constant vibration. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714003016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Ashour A, Wegner S, Trittel T, Börzsönyi T, Stannarius R. Outflow and clogging of shape-anisotropic grains in hoppers with small apertures. SOFT MATTER 2017; 13:402-414. [PMID: 27878164 DOI: 10.1039/c6sm02374f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Outflow of granular material through a small orifice is a fundamental process in many industrial fields, for example in silo discharge, and in everyday's life. Most experimental studies of the dynamics have been performed so far with monodisperse disks in two-dimensional (2D) hoppers or spherical grains in 3D. We investigate this process for shape-anisotropic grains in 3D hoppers and discuss the role of size and shape parameters on avalanche statistics, clogging states, and mean flow velocities. It is shown that an increasing aspect ratio of the grains leads to lower flow rates and higher clogging probabilities compared to spherical grains. On the other hand, the number of grains forming the clog is larger for elongated grains of comparable volumes, and the long axis of these blocking grains is preferentially aligned towards the center of the orifice. We find a qualitative transition in the hopper discharge behavior for aspect ratios larger than ≈6. At still higher aspect ratios >8-12, the outflowing material leaves long vertical holes in the hopper that penetrate the complete granular bed. This changes the discharge characteristics qualitatively.
Collapse
Affiliation(s)
- A Ashour
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany. and Faculty of Engineering and Technology, Future University, End of 90 St., New Cairo, Egypt
| | - S Wegner
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
| | - T Trittel
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
| | - T Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary
| | - R Stannarius
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
| |
Collapse
|
20
|
Reising AE, Godinho JM, Hormann K, Jorgenson JW, Tallarek U. Larger voids in mechanically stable, loose packings of 1.3μm frictional, cohesive particles: Their reconstruction, statistical analysis, and impact on separation efficiency. J Chromatogr A 2016; 1436:118-32. [PMID: 26858113 DOI: 10.1016/j.chroma.2016.01.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 12/23/2022]
Abstract
Lateral transcolumn heterogeneities and the presence of larger voids in a packing (comparable to the particle size) can limit the preparation of efficient chromatographic columns. Optimizing and understanding the packing process provides keys to better packing structures and column performance. Here, we investigate the slurry-packing process for a set of capillary columns packed with C18-modified, 1.3μm bridged-ethyl hybrid porous silica particles. The slurry concentration used for packing 75μm i.d. fused-silica capillaries was increased gradually from 5 to 50mg/mL. An intermediate concentration (20mg/mL) resulted in the best separation efficiency. Three capillaries from the set representing low, intermediate, and high slurry concentrations were further used for three-dimensional bed reconstruction by confocal laser scanning microscopy and morphological analysis of the bed structure. Previous studies suggest increased slurry concentrations will result in higher column efficiency due to the suppression of transcolumn bed heterogeneities, but only up to a critical concentration. Too concentrated slurries favour the formation of larger packing voids (reaching the size of the average particle diameter). Especially large voids, which can accommodate particles from>90% of the particle size distribution, are responsible for a decrease in column efficiency at high slurry concentrations. Our work illuminates the increasing difficulty of achieving high bed densities with small, frictional, cohesive particles. As particle size decreases interparticle forces become increasingly important and hinder the ease of particle sliding during column packing. While an optimal slurry concentration is identified with respect to bed morphology and separation efficiency under conditions in this work, our results suggest adjustments of this concentration are required with regard to particle size, surface roughness, column dimensions, slurry liquid, and external effects utilized during the packing process (pressure protocol, ultrasound, electric fields).
Collapse
Affiliation(s)
- Arved E Reising
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Justin M Godinho
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States
| | - Kristof Hormann
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - James W Jorgenson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States.
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| |
Collapse
|