1
|
Abamba OG, Kolebaje OT, Vincent UE, McClintock PVE. Vibrational resonance in bichromatically excited diatomic molecules in a shifted molecular potential. Phys Rev E 2024; 110:034209. [PMID: 39425406 DOI: 10.1103/physreve.110.034209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 10/21/2024]
Abstract
For bichromatically excited diatomic molecules modeled in a shifted Tietz-Wei molecular potential, we demonstrate the occurrence of vibrational resonance (VR) when a saddle-node (SN) bifurcation takes place and its nonoccurrence in the absence of an SN bifurcation. We have examined the VR phenomenon and its connection with SN bifurcation for eight diatomic molecules, namely, H_{2}, N_{2}, Cl_{2}, I_{2}, O_{2}, HF, CO, and NO, consisting of homogeneous, heterogenous, and halogen molecules. We demonstrate that each of them vibrates at a distinct resonant frequency but with a spread in frequency. The high-frequency amplitude at which VR occurs corresponds to the SN-bifurcation point. We validate our analytic results by numerical simulations and show that the homonuclear halogens respond only weakly to bichromatic fields, which may perhaps be linked to their absence of SN bifurcation.
Collapse
Affiliation(s)
| | - O T Kolebaje
- Department of Physics, Adeyemi University of Education, Ondo 350106, Nigeria
| | | | | |
Collapse
|
2
|
Chizhevsky VN. Amplification of optical signals in a bistable vertical-cavity surface-emitting laser by vibrational resonance. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200241. [PMID: 33455547 DOI: 10.1098/rsta.2020.0241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 05/22/2023]
Abstract
The paper presents the results of the experimental study of an application of the phenomenon of vibrational resonance (VR) for enhancement of the response of a bistable vertical-cavity surface-emitting laser (VCSEL) to the effect of optical modulating signals. Specifically, two different cases were investigated: (a) the control of all-optical switching caused by a modulated orthogonal optical injection from another VCSEL and (b) the amplification of autodyne signals from a vibrating diffusely reflecting surface in the self-mixing optical interferometry. It is experimentally demonstrated that an application of the phenomenon of VR in both cases studied leads to a strong amplification of the input optical signals by a factor from 10 to 200 depending on the experimental conditions with respect to the initial values. The effect of the asymmetry of a bistable potential on the amplification factor was also studied. The results obtained can be used to improve all-optical switchings for application in communication systems and enhancement of autodyne signals in self-mixing optical interferometry. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.
Collapse
Affiliation(s)
- V N Chizhevsky
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk 220068, Belarus
| |
Collapse
|
3
|
Roy-Layinde TO, Vincent UE, Abolade SA, Popoola OO, Laoye JA, McClintock PVE. Vibrational resonances in driven oscillators with position-dependent mass. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200227. [PMID: 33455553 DOI: 10.1098/rsta.2020.0227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 05/22/2023]
Abstract
The vibrational resonance (VR) phenomenon has received a great deal of research attention over the two decades since its introduction. The wide range of theoretical and experimental results obtained has, however, been confined to VR in systems with constant mass. We now extend the VR formalism to encompass systems with position-dependent mass (PDM). We consider a generalized classical counterpart of the quantum mechanical nonlinear oscillator with PDM. By developing a theoretical framework for determining the response amplitude of PDM systems, we examine and analyse their VR phenomenona, obtain conditions for the occurrence of resonances, show that the role played by PDM can be both inductive and contributory, and suggest that PDM effects could usefully be explored to maximize the efficiency of devices being operated in VR modes. Our analysis suggests new directions for the investigation of VR in a general class of PDM systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.
Collapse
Affiliation(s)
- T O Roy-Layinde
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - U E Vincent
- Department of Physical Sciences, Redeemer's University, P.M.B. 230 Ede, Nigeria
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - S A Abolade
- Department of Physics, University of Ibadan, Ibadan, Nigeria
| | - O O Popoola
- Department of Physics, University of Ibadan, Ibadan, Nigeria
| | - J A Laoye
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - P V E McClintock
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| |
Collapse
|
4
|
Omoteso KA, Roy-Layinde TO, Laoye JA, Vincent UE, McClintock PVE. Acoustic vibrational resonance in a Rayleigh-Plesset bubble oscillator. ULTRASONICS SONOCHEMISTRY 2021; 70:105346. [PMID: 33011444 PMCID: PMC7786605 DOI: 10.1016/j.ultsonch.2020.105346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/06/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The phenomenon of vibrational resonance (VR) has been investigated in a Rayleigh-Plesset oscillator for a gas bubble oscillating in an incompressible liquid while driven by a dual-frequency force consisting of high-frequency, amplitude-modulated, weak, acoustic waves. The complex equation of the Rayleigh-Plesset bubble oscillator model was expressed as the dynamics of a classical particle in a potential well of the Liénard type, thus allowing us to use both numerical and analytic approaches to investigate the occurrence of VR. We provide clear evidence that an acoustically-driven bubble oscillates in a time-dependent single or double-well potential whose properties are determined by the density of the liquid and its surface tension. We show both theoretically and numerically that, besides the VR effect facilitated by the variation of the parameters on which the high-frequency depends, amplitude modulation, the properties of the liquid in which the gas bubble oscillates contribute significantly to the occurrence of VR. In addition, we discuss the observation of multiple resonances and their origin for the double-well case, as well as their connection to the low frequency, weak, acoustic force field.
Collapse
Affiliation(s)
- K A Omoteso
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - T O Roy-Layinde
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - J A Laoye
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - U E Vincent
- Department of Physical Sciences, Redeemer's University, P.M.B. 230, Ede, Nigeria; Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| | - P V E McClintock
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
5
|
Du L, Han R, Jiang J, Guo W. Entropic vibrational resonance. Phys Rev E 2020; 102:012149. [PMID: 32795083 DOI: 10.1103/physreve.102.012149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/10/2020] [Indexed: 05/22/2023]
Abstract
We demonstrate the existence of vibrational resonance associated with the presence of an uneven boundary. When the motion of a Brownian particle is confined in a region with an uneven boundary, constrained to a double cavity, a high-frequency signal may produce a peak in the spectral power amplification of the other low-frequency signal and therefore to the appearance of the vibrational resonance phenomenon. The mechanism of vibrational resonance in constrained boundaries is different from that in energetic potentials and is termed entropic vibrational resonance (EVR). The EVR can be observed even if the bias force is absent in any direction. Through careful analysis, we clarify two types of mechanisms of the EVR. The one mechanism is ascribed to the transition from a bistable system to a monostable system, and the other corresponds to the match between the escape rate and the natural frequency of the low-frequency signal. Our work merges the vibrational resonance with an uneven boundary, thus extending the scope of the vibrational resonance and shedding new light on the concept of resonance.
Collapse
Affiliation(s)
- Luchun Du
- Department of Physics, Yunnan University, Kunming 650091, China
- School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
| | - Ruoshui Han
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Jiahao Jiang
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Wei Guo
- School of Physical Science and Technology, Kunming University, Kunming 650214, China
| |
Collapse
|
6
|
Olusola OI, Shomotun OP, Vincent UE, McClintock PVE. Quantum vibrational resonance in a dual-frequency-driven Tietz-Hua quantum well. Phys Rev E 2020; 101:052216. [PMID: 32575245 DOI: 10.1103/physreve.101.052216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
We investigate the response of a quantum particle in the Tietz-Hua quantum potential driven by biharmonic fields: a low-frequency force and a very high frequency force. The response is characterized by the occurrence of a maximum in the first-order transition probability amplitude |s|^{2} under the influence of the applied fields. It is shown that in the absence of the high-frequency component of the applied fields, |s|^{2} shows a distinct sequence of resonances, whereas an increase in the amplitude of the high-frequency field induces minima in |s|^{2}. However, the |s|^{2} maximum occurs in the low-frequency regime where it may be considered otherwise weak in the presence of a single harmonic force.
Collapse
Affiliation(s)
- O I Olusola
- Department of Physics, University of Lagos, Lagos, Nigeria
| | - O P Shomotun
- Department of Physics, University of Lagos, Lagos, Nigeria
| | - U E Vincent
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Department of Physical Sciences, Redeemer's University, Ede, Nigeria
| | - P V E McClintock
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|