1
|
Dong JY, Kitahama Y, Fujita T, Adachi M, Shigeta Y, Ishizaki A, Tanaka S, Xiao TH, Goda K. Manipulation of photosynthetic energy transfer by vibrational strong coupling. J Chem Phys 2024; 160:045101. [PMID: 38284659 DOI: 10.1063/5.0183383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Uncovering the mystery of efficient and directional energy transfer in photosynthetic organisms remains a critical challenge in quantum biology. Recent experimental evidence and quantum theory developments indicate the significance of quantum features of molecular vibrations in assisting photosynthetic energy transfer, which provides the possibility of manipulating the process by controlling molecular vibrations. Here, we propose and theoretically demonstrate efficient manipulation of photosynthetic energy transfer by using vibrational strong coupling between the vibrational state of a Fenna-Matthews-Olson (FMO) complex and the vacuum state of an optical cavity. Specifically, based on a full-quantum analytical model to describe the strong coupling effect between the optical cavity and molecular vibration, we realize efficient manipulation of energy transfer efficiency (from 58% to 92%) and energy transfer time (from 20 to 500 ps) in one branch of FMO complex by actively controlling the coupling strength and the quality factor of the optical cavity under both near-resonant and off-resonant conditions, respectively. Our work provides a practical scenario to manipulate photosynthetic energy transfer by externally interfering molecular vibrations via an optical cavity and a comprehensible conceptual framework for researching other similar systems.
Collapse
Affiliation(s)
- Jun-Yu Dong
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasutaka Kitahama
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- LucasLand, Tokyo 101-0052, Japan
| | - Takatoshi Fujita
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Motoyasu Adachi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan
| | - Ting-Hui Xiao
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Keisuke Goda
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- LucasLand, Tokyo 101-0052, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
2
|
Wei J, Zhao F, Liu J, Zhao Q, Wu N, Xu D. Enhanced exciton transport in an optical cavity field with spatially varying profile. Phys Rev E 2019; 100:012125. [PMID: 31499908 DOI: 10.1103/physreve.100.012125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 11/07/2022]
Abstract
We explicitly consider the spatial profile of the light field in the study of exciton transport through a one-dimensional molecular aggregate in the cavity. When the scale of the aggregate is comparable with the cavity wavelength, the resultant exciton-photon coupling strength varies with the position of each monomer. Such effect is explicitly included in a quantum master equation describing the dynamics of the excitonic, photonic, and vibrational modes. By investigating the steady-state exciton currents, we show that the strong and spatially varying exciton-photon coupling dominates the exciton transport and significantly enhances the transport efficiency. With suitable intermonomer distance, the delocalized polaronic mode generates more occupation on the acceptor monomer than the bridge monomers and thus makes it a more efficient channel for exciton transfer. The effects of localized vibrations are also investigated, and the vibration-assisted exciton transport is demonstrated with strong exciton-vibration coupling. Our results show that the vibrational modes are not as significant as the spatially varying exciton-photon couplings in affecting the exciton transport.
Collapse
Affiliation(s)
- Jianye Wei
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Fang Zhao
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Jingyu Liu
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Qing Zhao
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Ning Wu
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Dazhi Xu
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
3
|
Wertnik M, Chin A, Nori F, Lambert N. Optimizing co-operative multi-environment dynamics in a dark-state-enhanced photosynthetic heat engine. J Chem Phys 2018; 149:084112. [PMID: 30193490 DOI: 10.1063/1.5040898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We analyze the role of coherent, non-perturbative system-bath interactions in a photosynthetic heat engine. Using the reaction-coordinate formalism to describe the vibrational phonon-environment in the engine, we analyze the efficiency around an optimal parameter regime predicted in earlier studies. We show that, in the limit of high-temperature photon irradiation, the phonon-assisted population transfer between bright and dark states is suppressed due to dephasing from the photon environment, even in the Markov limit where we expect the influence of each bath to have an independent and additive effect on the dynamics. Manipulating the phonon bath properties via its spectral density enables us to identify both optimal low- and high-frequency regimes where the suppression can be removed. This suppression of transfer and its removal suggests that it is important to consider carefully the non-perturbative and cooperative effects of system-bath environments in designing artificial photosynthetic systems and also that manipulating inter-environmental interactions could provide a new multidimensional "lever" by which photocells and other types of quantum devices can be optimized.
Collapse
Affiliation(s)
- Melina Wertnik
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Alex Chin
- Institut des NanoSciences de Paris, Sorbonne Université, 4 Place Jussieu, Bote Courrier 840, 75252 Paris Cedex 05, France
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Neill Lambert
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Abstract
The act of describing how a physical process changes a system is the basis for understanding observed phenomena. For quantum-mechanical processes in particular, the affect of processes on quantum states profoundly advances our knowledge of the natural world, from understanding counter-intuitive concepts to the development of wholly quantum-mechanical technology. Here, we show that quantum-mechanical processes can be quantified using a generic classical-process model through which any classical strategies of mimicry can be ruled out. We demonstrate the success of this formalism using fundamental processes postulated in quantum mechanics, the dynamics of open quantum systems, quantum-information processing, the fusion of entangled photon pairs, and the energy transfer in a photosynthetic pigment-protein complex. Since our framework does not depend on any specifics of the states being processed, it reveals a new class of correlations in the hierarchy between entanglement and Einstein-Podolsky-Rosen steering and paves the way for the elaboration of a generic method for quantifying physical processes.
Collapse
|
6
|
Plasmonic bio-sensing for the Fenna-Matthews-Olson complex. Sci Rep 2017; 7:39720. [PMID: 28045089 PMCID: PMC5206648 DOI: 10.1038/srep39720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/25/2016] [Indexed: 12/25/2022] Open
Abstract
We study theoretically the bio-sensing capabilities of metal nanowire surface plasmons. As a specific example, we couple the nanowire to specific sites (bacteriochlorophyll) of the Fenna-Matthews-Olson (FMO) photosynthetic pigment protein complex. In this hybrid system, we find that when certain sites of the FMO complex are subject to either the suppression of inter-site transitions or are entirely disconnected from the complex, the resulting variations in the excitation transfer rates through the complex can be monitored through the corresponding changes in the scattering spectra of the incident nanowire surface plasmons. We also find that these changes can be further enhanced by changing the ratio of plasmon-site couplings. The change of the Fano lineshape in the scattering spectra further reveals that “site 5” in the FMO complex plays a distinct role from other sites. Our results provide a feasible way, using single photons, to detect mutation-induced, or bleaching-induced, local defects or modifications of the FMO complex, and allows access to both the local and global properties of the excitation transfer in such systems.
Collapse
|