1
|
Sorkin B, Dean DS. Single-file diffusion in spatially inhomogeneous systems. Phys Rev E 2023; 108:054125. [PMID: 38115401 DOI: 10.1103/physreve.108.054125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/06/2023] [Indexed: 12/21/2023]
Abstract
We study the effect of spatially varying potential and diffusivity on the dispersion of a tracer particle in single-file diffusion. Noninteracting particles in such a system exhibit normal diffusion at late times, which is characterized by an effective diffusion constant D_{eff}. Here we demonstrate the physically appealing result that the dispersion of single-file tracers in this system has the same long-time behavior as that for Brownian particles in a spatially homogeneous system with constant diffusivity D_{eff}. Our results are based on a late-time analysis of the Fokker-Planck equation, motivated by the mathematical theory of homogenization. The findings are confirmed by numerical simulations for both annealed and quenched initial conditions.
Collapse
Affiliation(s)
- Benjamin Sorkin
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - David S Dean
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
- Team MONC, INRIA Bordeaux Sud Ouest, CNRS UMR 5251, Bordeaux INP, Univ. Bordeaux, F-33400 Talence, France
| |
Collapse
|
2
|
Hoang Ngoc Minh T, Rotenberg B, Marbach S. Ionic fluctuations in finite volumes: fractional noise and hyperuniformity. Faraday Discuss 2023; 246:225-250. [PMID: 37565454 DOI: 10.1039/d3fd00031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Observing finite regions of a bigger system is a common aim, from microscopy to molecular simulations. In the latter especially, there is ongoing interest in predicting thermodynamic properties from tracking fluctuations in finite observation volumes. However, kinetic properties have received little attention, especially not in ionic solutions, where electrostatic interactions play a decisive role. Here, we probe ionic fluctuations in finite volumes with Brownian dynamics and build an analytical framework that reproduces our simulation results and is broadly applicable to other systems with pairwise interactions. Particle number and charge correlations exhibit a rich phenomenology with time, characterized by a diversity of timescales. The noise spectrum of both quantities decays as 1/f3/2, where f is the frequency. This signature of fractional noise shows the universality of 1/f3/2 scalings when observing diffusing particles in finite domains. The hyperuniform behaviour of charge fluctuations, namely that correlations scale with the area of the observation volume, is preserved in time. Correlations even become proportional to the box perimeter at sufficiently long times. Our results pave the way to understand fluctuations in more complex systems, from nanopores to single-particle electrochemistry.
Collapse
Affiliation(s)
- Thê Hoang Ngoc Minh
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Sophie Marbach
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
- Courant Institute of Mathematical Sciences, New York University, NY, 10012, USA.
| |
Collapse
|
3
|
Alexandre A, Lavaud M, Fares N, Millan E, Louyer Y, Salez T, Amarouchene Y, Guérin T, Dean DS. Non-Gaussian Diffusion Near Surfaces. PHYSICAL REVIEW LETTERS 2023; 130:077101. [PMID: 36867824 DOI: 10.1103/physrevlett.130.077101] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
We study the diffusion of particles confined close to a single wall and in double-wall planar channel geometries where the local diffusivities depend on the distance to the boundaries. Displacement parallel to the walls is Brownian as characterized by its variance, but it is non-Gaussian having a nonzero fourth cumulant. Establishing a link with Taylor dispersion, we calculate the fourth cumulant and the tails of the displacement distribution for general diffusivity tensors along with potentials generated by either the walls or externally, for instance, gravity. Experimental and numerical studies of the motion of a colloid in the direction parallel to the wall give measured fourth cumulants which are correctly predicted by our theory. Interestingly, contrary to models of Brownian-yet-non-Gaussian diffusion, the tails of the displacement distribution are shown to be Gaussian rather than exponential. All together, our results provide additional tests and constraints for the inference of force maps and local transport properties near surfaces.
Collapse
Affiliation(s)
- Arthur Alexandre
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Maxime Lavaud
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Nicolas Fares
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
- Department of Physics, Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | - Elodie Millan
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Yann Louyer
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Thomas Salez
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | | | - Thomas Guérin
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - David S Dean
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
- Team MONC, INRIA Bordeaux Sud Ouest, CNRS UMR 5251, Bordeaux INP, Université de Bordeaux, F-33400 Talence, France
| |
Collapse
|
4
|
Alexandre A, Mangeat M, Guérin T, Dean DS. How Stickiness Can Speed Up Diffusion in Confined Systems. PHYSICAL REVIEW LETTERS 2022; 128:210601. [PMID: 35687439 DOI: 10.1103/physrevlett.128.210601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
The paradigmatic model for heterogeneous media used in diffusion studies is built from reflecting obstacles and surfaces. It is well known that the crowding effect produced by these reflecting surfaces slows the dispersion of Brownian tracers. Here, using a general adsorption desorption model with surface diffusion, we show analytically that making surfaces or obstacles attractive can accelerate dispersion. In particular, we show that this enhancement of diffusion can exist even when the surface diffusion constant is smaller than that in the bulk. Even more remarkably, this enhancement effect occurs when the effective diffusion constant, when restricted to surfaces only, is lower than the effective diffusivity with purely reflecting boundaries. We give analytical formulas for this intriguing effect in periodic arrays of spheres as well as undulating microchannels. Our results are confirmed by numerical calculations and Monte Carlo simulations.
Collapse
Affiliation(s)
- A Alexandre
- Laboratoire Ondes et matière d'Aquitaine, CNRS/University of Bordeaux, F-33400 Talence, France
| | - M Mangeat
- Center for Biophysics and Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - T Guérin
- Laboratoire Ondes et matière d'Aquitaine, CNRS/University of Bordeaux, F-33400 Talence, France
| | - D S Dean
- Laboratoire Ondes et matière d'Aquitaine, CNRS/University of Bordeaux, F-33400 Talence, France
- Team MONC, INRIA Bordeaux Sud Ouest, CNRS UMR 5251, Bordeaux INP, University Bordeaux, F-33400 Talence, France
| |
Collapse
|
5
|
Mangeat M, Guérin T, Dean DS. Effective diffusivity of Brownian particles in a two dimensional square lattice of hard disks. J Chem Phys 2020; 152:234109. [PMID: 32571035 DOI: 10.1063/5.0009095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We revisit the classic problem of the effective diffusion constant of a Brownian particle in a square lattice of reflecting impenetrable hard disks. This diffusion constant is also related to the effective conductivity of non-conducting and infinitely conductive disks in the same geometry. We show how a recently derived Green's function for the periodic lattice can be exploited to derive a series expansion of the diffusion constant in terms of the disk's volume fraction φ. Second, we propose a variant of the Fick-Jacobs approximation to study the large volume fraction limit. This combination of analytical results is shown to describe the behavior of the diffusion constant for all volume fractions.
Collapse
Affiliation(s)
- M Mangeat
- Univ. Bordeaux, CNRS, Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR 5798, F-33405 Talence, France
| | - T Guérin
- Univ. Bordeaux, CNRS, Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR 5798, F-33405 Talence, France
| | - D S Dean
- Univ. Bordeaux, CNRS, Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR 5798, F-33405 Talence, France
| |
Collapse
|
6
|
Mangeat M, Amarouchene Y, Louyer Y, Guérin T, Dean DS. Role of nonconservative scattering forces and damping on Brownian particles in optical traps. Phys Rev E 2019; 99:052107. [PMID: 31212517 DOI: 10.1103/physreve.99.052107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 11/07/2022]
Abstract
We consider a model of a particle trapped in a harmonic optical trap but with the addition of a nonconservative radiation induced force. This model is known to correctly describe experimentally observed trapped particle statistics for a wide range of physical parameters, such as temperature and pressure. We theoretically analyze the effect of nonconservative force on the underlying steady state distribution as well as the power spectrum for the particle position. We compute perturbatively the probability distribution of the resulting nonequilibrium steady states for all dynamical regimes underdamped through to overdamped and give expressions for the associated currents in phase space (position and velocity). We also give the spectral density of the trapped particle's position in all dynamical regimes and for any value of the nonconservative force. Signatures of the presence of nonconservative forces are shown to be particularly strong for the underdamped regime at low frequencies.
Collapse
Affiliation(s)
- Matthieu Mangeat
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | | | - Yann Louyer
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Thomas Guérin
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - David S Dean
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| |
Collapse
|
7
|
Mangeat M, Guérin T, Dean DS. Dispersion in two-dimensional periodic channels with discontinuous profiles. J Chem Phys 2018; 149:124105. [DOI: 10.1063/1.5045183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Mangeat
- Laboratoire Ondes et Matière d’Aquitaine (LOMA), CNRS, UMR 5798, Université de Bordeaux, F-33400 Talence, France
| | - T. Guérin
- Laboratoire Ondes et Matière d’Aquitaine (LOMA), CNRS, UMR 5798, Université de Bordeaux, F-33400 Talence, France
| | - D. S. Dean
- Laboratoire Ondes et Matière d’Aquitaine (LOMA), CNRS, UMR 5798, Université de Bordeaux, F-33400 Talence, France
| |
Collapse
|
8
|
Guérin T, Dean DS. Universal time-dependent dispersion properties for diffusion in a one-dimensional critically tilted potential. Phys Rev E 2017; 95:012109. [PMID: 28208337 DOI: 10.1103/physreve.95.012109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 11/07/2022]
Abstract
We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F. The system is studied in the region where the force is close to the critical value F_{c} at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F>F_{c}, whereas for F<F_{c} the late-time and intermediate-time diffusive regimes are indistinguishable. Explicit asymptotic regimes for the MSD curves are identified at all time scales.
Collapse
Affiliation(s)
- T Guérin
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), CNRS, UMR 5798/Université de Bordeaux, F-33400 Talence, France
| | - D S Dean
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), CNRS, UMR 5798/Université de Bordeaux, F-33400 Talence, France
| |
Collapse
|