1
|
von Kenne A, Bär M, Niedermayer T. Hydrodynamic synchronization of elastic cilia: How surface effects determine the characteristics of metachronal waves. Phys Rev E 2024; 109:054407. [PMID: 38907471 DOI: 10.1103/physreve.109.054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 06/24/2024]
Abstract
Cilia are hairlike microactuators whose cyclic motion is specialized to propel extracellular fluids at low Reynolds numbers. Clusters of these organelles can form synchronized beating patterns, called metachronal waves, which presumably arise from hydrodynamic interactions. We model hydrodynamically interacting cilia by microspheres elastically bound to circular orbits, whose inclinations with respect to a no-slip wall model the ciliary power and recovery stroke, resulting in an anisotropy of the viscous flow. We derive a coupled phase-oscillator description by reducing the microsphere dynamics to the slow timescale of synchronization and determine analytical metachronal wave solutions and their stability in a periodic chain setting. In this framework, a simple intuition for the hydrodynamic coupling between phase oscillators is established by relating the geometry of flow near the surface of a cell or tissue to the directionality of the hydrodynamic coupling functions. This intuition naturally explains the properties of the linear stability of metachronal waves. The flow near the surface stabilizes metachronal waves with long wavelengths propagating in the direction of the power stroke and, moreover, metachronal waves with short wavelengths propagating perpendicularly to the power stroke. Performing simulations of phase-oscillator chains with periodic boundary conditions, we indeed find that both wave types emerge with a variety of linearly stable wave numbers. In open chains of phase oscillators, the dynamics of metachronal waves is fundamentally different. Here the elasticity of the model cilia controls the wave direction and selects a particular wave number: At large elasticity, waves traveling in the direction of the power stroke are stable, whereas at smaller elasticity waves in the opposite direction are stable. For intermediate elasticity both wave directions coexist. In this regime, waves propagating towards both ends of the chain form, but only one wave direction prevails, depending on the elasticity and initial conditions.
Collapse
Affiliation(s)
- Albert von Kenne
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt, Berlin 10587, Germany
| | - Markus Bär
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt, Berlin 10587, Germany
| | - Thomas Niedermayer
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt, Berlin 10587, Germany
| |
Collapse
|
2
|
Hickey DJ, Golestanian R, Vilfan A. Nonreciprocal interactions give rise to fast cilium synchronization in finite systems. Proc Natl Acad Sci U S A 2023; 120:e2307279120. [PMID: 37756336 PMCID: PMC10556628 DOI: 10.1073/pnas.2307279120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Motile cilia beat in an asymmetric fashion in order to propel the surrounding fluid. When many cilia are located on a surface, their beating can synchronize such that their phases form metachronal waves. Here, we computationally study a model where each cilium is represented as a spherical particle, moving along a tilted trajectory with a position-dependent active driving force and a position-dependent internal drag coefficient. The model thus takes into account all the essential broken symmetries of the ciliary beat. We show that taking into account the near-field hydrodynamic interactions, the effective coupling between cilia even over an entire beating cycle can become nonreciprocal: The phase of a cilium is more strongly affected by an adjacent cilium on one side than by a cilium at the same distance in the opposite direction. As a result, synchronization starts from a seed at the edge of a group of cilia and propagates rapidly across the system, leading to a synchronization time that scales proportionally to the linear dimension of the system. We show that a ciliary carpet is characterized by three different velocities: the velocity of fluid transport, the phase velocity of metachronal waves, and the group velocity of order propagation. Unlike in systems with reciprocal coupling, boundary effects are not detrimental for synchronization, but rather enable the formation of the initial seed.
Collapse
Affiliation(s)
- David J. Hickey
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, 37077Göttingen, Germany
| | - Ramin Golestanian
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, 37077Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, United Kingdom
| | - Andrej Vilfan
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, 37077Göttingen, Germany
- Department of Condensed Matter Physics, Jožef Stefan Institute, 1000Ljubljana, Slovenia
| |
Collapse
|
3
|
Wang C, Tang H, Zhang X. Fluid-structure interaction of bio-inspired flexible slender structures: a review of selected topics. BIOINSPIRATION & BIOMIMETICS 2022; 17:041002. [PMID: 35443232 DOI: 10.1088/1748-3190/ac68ba] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Flexible slender structures are ubiquitous in biological systems and engineering applications. Fluid-structure interaction (FSI) plays a key role in the dynamics of such structures immersed in fluids. Here, we survey recent studies on highly simplified bio-inspired models (either mathematical or mechanical) that aim to revealthe flow physics associated with FSI. Various models from different sources of biological inspiration are included, namely flexible flapping foil inspired by fish and insects, deformable membrane inspired by jellyfish and cephalopods, beating filaments inspired by flagella and cilia of microorganisms, and flexible wall-mounted filaments inspired by terrestrial and aquatic plants. Suggestions on directions for future research are also provided.
Collapse
Affiliation(s)
- Chenglei Wang
- Research Center for Fluid Structure Interactions, Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, People's Republic of China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, People's Republic of China
| | - Hui Tang
- Research Center for Fluid Structure Interactions, Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, People's Republic of China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, People's Republic of China
| | - Xing Zhang
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
4
|
Chakrabarti B, Fürthauer S, Shelley MJ. A multiscale biophysical model gives quantized metachronal waves in a lattice of beating cilia. Proc Natl Acad Sci U S A 2022; 119:e2113539119. [PMID: 35046031 PMCID: PMC8795537 DOI: 10.1073/pnas.2113539119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022] Open
Abstract
Motile cilia are slender, hair-like cellular appendages that spontaneously oscillate under the action of internal molecular motors and are typically found in dense arrays. These active filaments coordinate their beating to generate metachronal waves that drive long-range fluid transport and locomotion. Until now, our understanding of their collective behavior largely comes from the study of minimal models that coarse grain the relevant biophysics and the hydrodynamics of slender structures. Here we build on a detailed biophysical model to elucidate the emergence of metachronal waves on millimeter scales from nanometer-scale motor activity inside individual cilia. Our study of a one-dimensional lattice of cilia in the presence of hydrodynamic and steric interactions reveals how metachronal waves are formed and maintained. We find that, in homogeneous beds of cilia, these interactions lead to multiple attracting states, all of which are characterized by an integer charge that is conserved. This even allows us to design initial conditions that lead to predictable emergent states. Finally, and very importantly, we show that, in nonuniform ciliary tissues, boundaries and inhomogeneities provide a robust route to metachronal waves.
Collapse
Affiliation(s)
- Brato Chakrabarti
- Center for Computational Biology, Flatiron Institute, New York, NY 10010
| | - Sebastian Fürthauer
- Center for Computational Biology, Flatiron Institute, New York, NY 10010;
- Institute of Applied Physics, TU Wien, Vienna 1040, Austria
| | - Michael J Shelley
- Center for Computational Biology, Flatiron Institute, New York, NY 10010;
- Courant Institute, New York University, New York, NY 10012
| |
Collapse
|
5
|
Mannan FO, Jarvela M, Leiderman K. Minimal model of the hydrodynamical coupling of flagella on a spherical body with application to Volvox. Phys Rev E 2020; 102:033114. [PMID: 33075899 DOI: 10.1103/physreve.102.033114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/22/2020] [Indexed: 11/07/2022]
Abstract
Flagella are hairlike appendages attached to microorganisms that allow the organisms to traverse their fluid environment. The algae Volvox are spherical swimmers with thousands of individual flagella on their surface, and their coordination is not fully understood. In this work, a previously developed minimal model of flagella synchronization is extended to the outer surface of a sphere submerged in a fluid. Each beating flagellum tip is modeled as a small sphere, elastically bound to a circular orbit just above the spherical surface and a regularized image system for Stokes flow outside of a sphere is used to enforce the no-slip condition. Biologically relevant distributions of rotors results in a rapidly developing and robust symplectic metachronal wave traveling from the anterior to the posterior of the spherical Volvox body.
Collapse
Affiliation(s)
- Forest O Mannan
- Mathematics & Computer Science Department, Western Colorado University, 1 Western Way, Gunnison, Colorado 81231, USA
| | - Miika Jarvela
- Department of Applied Mathematics and Statistics, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, USA
| | - Karin Leiderman
- Department of Applied Mathematics and Statistics, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, USA
| |
Collapse
|
6
|
Wan KY, Hürlimann SK, Fenix AM, McGillivary RM, Makushok T, Burns E, Sheung JY, Marshall WF. Reorganization of complex ciliary flows around regenerating Stentor coeruleus. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190167. [PMID: 31884915 PMCID: PMC7017328 DOI: 10.1098/rstb.2019.0167] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The phenomenon of ciliary coordination has garnered increasing attention in recent decades and multiple theories have been proposed to explain its occurrence in different biological systems. While hydrodynamic interactions are thought to dictate the large-scale coordinated activity of epithelial cilia for fluid transport, it is rather basal coupling that accounts for synchronous swimming gaits in model microeukaryotes such as Chlamydomonas. Unicellular ciliates present a fascinating yet understudied context in which coordination is found to persist in ciliary arrays positioned across millimetre scales on the same cell. Here, we focus on the ciliate Stentor coeruleus, chosen for its large size, complex ciliary organization, and capacity for cellular regeneration. These large protists exhibit ciliary differentiation between cortical rows of short body cilia used for swimming, and an anterior ring of longer, fused cilia called the membranellar band (MB). The oral cilia in the MB beat metachronously to produce strong feeding currents. Remarkably, upon injury, the MB can be shed and regenerated de novo. Here, we follow and track this developmental sequence in its entirety to elucidate the emergence of coordinated ciliary beating: from band formation, elongation, curling and final migration towards the cell anterior. We reveal a complex interplay between hydrodynamics and ciliary restructuring in Stentor, and highlight for the first time the importance of a ring-like topology for achieving long-range metachronism in ciliated structures. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’.
Collapse
Affiliation(s)
- Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,Marine Biological Laboratory, Physiology Course, Woods Hole, MA 02543, USA
| | - Sylvia K Hürlimann
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.,Marine Biological Laboratory, Physiology Course, Woods Hole, MA 02543, USA
| | - Aidan M Fenix
- Department of Pathology, University of Washington, WA 98109, USA.,Center for Cardiovascular Biology, University of Washington, WA 98109, USA.,Marine Biological Laboratory, Physiology Course, Woods Hole, MA 02543, USA
| | - Rebecca M McGillivary
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94143, USA.,Marine Biological Laboratory, Physiology Course, Woods Hole, MA 02543, USA
| | - Tatyana Makushok
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94143, USA.,Marine Biological Laboratory, Physiology Course, Woods Hole, MA 02543, USA
| | - Evan Burns
- Department of Biology, Vassar College, NY 12604, USA.,Marine Biological Laboratory, Whitman Center, Woods Hole, MA 02543, USA
| | - Janet Y Sheung
- Department of Physics and Astronomy, Vassar College, NY 12604, USA.,Marine Biological Laboratory, Whitman Center, Woods Hole, MA 02543, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94143, USA.,Marine Biological Laboratory, Physiology Course, Woods Hole, MA 02543, USA
| |
Collapse
|
7
|
Guccione G, Pimponi D, Gualtieri P, Chinappi M. Diffusivity of E. coli-like microswimmers in confined geometries: The role of the tumbling rate. Phys Rev E 2017; 96:042603. [PMID: 29347505 DOI: 10.1103/physreve.96.042603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 11/07/2022]
Abstract
We analyzed the effect of confinement on the effective diffusion of a run-and-tumble E. coli-like flagellated microswimmer. We used a simulation protocol where the run phases are obtained via a fully resolved swimming problem, i.e., Stokes equations for the fluid coupled with rigid-body dynamics for the microorganism, while tumbles and collisions with the walls are modeled as random reorientation of the microswimmer. For weak confinement, the swimmer is trapped in circular orbits close to the solid walls. In this case, optimal diffusivity is observed when the tumbling frequency is comparable with the angular velocity of the stable orbits. For strong confinement, stable circular orbits disappear and the diffusion coefficient monotonically decreases with the tumbling rate. Our findings are generic and can be potentially applied to other natural or artificial chiral microswimmers that follow circular trajectories close to an interface or in confined geometries.
Collapse
Affiliation(s)
- Giorgia Guccione
- Dipartimento di Fisica, Università di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma, Italia
| | - Daniela Pimponi
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Roma, Italia
| | - Paolo Gualtieri
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Roma, Italia
| | - Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, via del Politecnico 1, 00133 Roma, Italia
| |
Collapse
|
8
|
Ghorbani A, Najafi A. Symplectic and antiplectic waves in an array of beating cilia attached to a closed body. Phys Rev E 2017; 95:052412. [PMID: 28618581 DOI: 10.1103/physreve.95.052412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 06/07/2023]
Abstract
By taking into account the hydrodynamic interactions in a one dimensional array of model cilia attached to a no-slip cylinderical surface, we investigate their synchronized motion. We show how the emergence of metachronal waves depends on the initial state of the system and investigate the conditions under which the formation of symplectic and antiplectic waves are possible.
Collapse
Affiliation(s)
- Aref Ghorbani
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Ali Najafi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Department of Physics, University of Zanjan, Zanjan 313, Iran
| |
Collapse
|