1
|
Fan R, Hilfinger A. Characterizing the nonmonotonic behavior of mutual information along biochemical reaction cascades. Phys Rev E 2024; 110:034309. [PMID: 39425385 DOI: 10.1103/physreve.110.034309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/12/2024] [Indexed: 10/21/2024]
Abstract
Cells sense environmental signals and transmit information intracellularly through changes in the abundance of molecular components. Such molecular abundances can be measured in single cells and exhibit significant heterogeneity in clonal populations even in identical environments. Experimentally observed joint probability distributions can then be used to quantify the covariability and mutual information between molecular abundances along signaling cascades. However, because stationary state abundances along stochastic biochemical reaction cascades are not conditionally independent, their mutual information is not constrained by the data-processing inequality. Here, we report the conditions under which the mutual information between stationary state abundances increases along a cascade of biochemical reactions. This nonmonotonic behavior can be intuitively understood in terms of noise propagation and time-averaging stochastic fluctuations that are short-lived compared to an extrinsic signal. Our results reemphasize that mutual information measurements of stationary state distributions of cellular components may be of limited utility for characterizing cellular signaling processes because they do not measure information transfer.
Collapse
Affiliation(s)
| | - Andreas Hilfinger
- Department of Physics, University of Toronto, 60 St. George Street, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
- Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Ontario M5S 2E4, Canada
| |
Collapse
|
2
|
Biswas A. Pathway-resolved decomposition demonstrates correlation and noise dependencies of redundant information processing in recurrent feed-forward topologies. Phys Rev E 2022; 105:034406. [PMID: 35428055 DOI: 10.1103/physreve.105.034406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
In a biochemical assay that converts fan-in networks into feed-forward loops (FFLs), we show that the inter-regulator redundant information about the output gene product can be decomposed into finer components, mediated by the constituent pathways. Variance-based information within the linear noise regime facilitates quantifying these submodular redundancies. Contrary to the conventional wisdom on information decomposition, we report that information redundancy depends nontrivially on inter-regulator correlation. For the type-1 coherent (C1) and incoherent (I1) FFLs, the direct regulatory path-mediated redundancy is certainly correlation independent. However, components induced by the indirect regulatory path and interpathway interference are correlation dependent in (non)linear fashion. The trade-off between information redundancy and similarly decomposable extrinsic noise from input to output node has been demonstrated for the pathways and full motifs. Our analyses suggest that the interpathway cross redundancy positively and negatively influences the superposition of elementary redundancies in the C1- and I1-FFLs, respectively. Their corresponding total extrinsic noise is produced by the weighted sum and difference of the pathway-specific components. We find that the I1-FFL is able to manufacture more varied redundancy and extrinsic noise responses compared to the C1-FFL. Underlying the differing characteristics of the composite metrics across FFL variants, there exist uniformly behaving pathway-dependent elements. The decomposition framework has been meticulously explored in biologically rational parametric realizations through analytical estimates and stochastic simulations.
Collapse
Affiliation(s)
- Ayan Biswas
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700009, India
| |
Collapse
|
3
|
Roy TS, Nandi M, Biswas A, Chaudhury P, Banik SK. Information transmission in a two-step cascade: interplay of activation and repression. Theory Biosci 2021; 140:295-306. [PMID: 34611826 DOI: 10.1007/s12064-021-00357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
We present an information-theoretic formalism to study signal transduction in four architectural variants of a model two-step cascade with increasing input population. Our results categorize these four types into two classes depending upon the effect of activation and repression on mutual information, net synergy, and signal-to-noise ratio. Using the Gaussian framework and linear noise approximation, we derive the analytic expressions for these metrics to establish their underlying relationships in terms of the biochemical parameters. We also verify our approximations through stochastic simulations.
Collapse
Affiliation(s)
- Tuhin Subhra Roy
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata, 700009, India
| | - Mintu Nandi
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata, 700009, India
| | - Ayan Biswas
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata, 700009, India
| | - Pinaki Chaudhury
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata, 700009, India
| | - Suman K Banik
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata, 700009, India.
| |
Collapse
|
4
|
Momin MSA, Biswas A. Extrinsic noise of the target gene governs abundance pattern of feed-forward loop motifs. Phys Rev E 2021; 101:052411. [PMID: 32575309 DOI: 10.1103/physreve.101.052411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Feed-forward loop (FFL) is found to be a recurrent structure in bacterial and yeast gene transcription regulatory networks. In a generic FFL, transcription factor (TF) S regulates production of another TF X while both of these TFs regulate production of final gene-product Y. Depending upon the regulatory programs (activation or repression), FFLs are grouped into two broad classes: coherent (C) and incoherent (I), each class containing four distinct types (C1-C4 and I1-I4). These FFL types are experimentally observed to occur with varied frequencies, C1 and I1 being the abundant ones. Here we present a stochastic framework singling out the absolute value of the normalized covariance of X and Y to be the determining factor behind the abundance of FFLs while considering differential promoter activities of X and Y. Our theoretical construct employs two possible signal integration mechanisms (additive and multiplicative) to synthesize Y while steady-state population level of S remains fixed or becomes tunable reflecting two possible environmental signaling scenarios. Our model categorically points out that abundant FFLs exhibit higher amount of the designated metric which has a biophysical connotation of extrinsic noise for the target gene Y. Our predictions emanating from an overarching analytical expression utilizing biologically plausible parametric conditions are substantiated by stochastic simulation.
Collapse
Affiliation(s)
| | - Ayan Biswas
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700009, India
| |
Collapse
|
5
|
Finn C, Lizier JT. Generalised Measures of Multivariate Information Content. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E216. [PMID: 33285991 PMCID: PMC7851747 DOI: 10.3390/e22020216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
The entropy of a pair of random variables is commonly depicted using a Venn diagram. This representation is potentially misleading, however, since the multivariate mutual information can be negative. This paper presents new measures of multivariate information content that can be accurately depicted using Venn diagrams for any number of random variables. These measures complement the existing measures of multivariate mutual information and are constructed by considering the algebraic structure of information sharing. It is shown that the distinct ways in which a set of marginal observers can share their information with a non-observing third party corresponds to the elements of a free distributive lattice. The redundancy lattice from partial information decomposition is then subsequently and independently derived by combining the algebraic structures of joint and shared information content.
Collapse
Affiliation(s)
- Conor Finn
- Centre for Complex Systems, The University of Sydney, Sydney NSW 2006, Australia;
- CSIRO Data61, Marsfield NSW 2122, Australia
| | - Joseph T. Lizier
- Centre for Complex Systems, The University of Sydney, Sydney NSW 2006, Australia;
| |
Collapse
|
6
|
Momin MSA, Biswas A, Banik SK. Coherent feed-forward loop acts as an efficient information transmitting motif. Phys Rev E 2020; 101:022407. [PMID: 32168643 DOI: 10.1103/physreve.101.022407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
We present a theoretical formalism to study steady-state information transmission in a coherent type-1 feed-forward loop motif with an additive signal integration mechanism. Our construct allows a two-step cascade to be slowly transformed into a bifurcation network via a feed-forward loop, which is a prominent network motif. Using a Gaussian framework, we show that among these three network patterns, the feed-forward loop motif harnesses the maximum amount of Shannon mutual information fractions constructed between the final gene-product and each of the master and coregulators of the target gene. We also show that this feed-forward loop motif provides a substantially lower amount of noise in target gene expression, compared with the other two network structures. Our theoretical predictions, which remain invariant for a couple of parametric transformations, point out that the coherent type-1 feed-forward loop motif may qualify as a better decoder of environmental signals when compared with the other two network patterns in perspective.
Collapse
Affiliation(s)
| | - Ayan Biswas
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700009, India
| | - Suman K Banik
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700009, India
| |
Collapse
|
7
|
Nandi M, Banik SK, Chaudhury P. Restricted information in a two-step cascade. Phys Rev E 2019; 100:032406. [PMID: 31639964 DOI: 10.1103/physreve.100.032406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 11/07/2022]
Abstract
A cell must sense extracellular and intracellular fluctuations and respond appropriately to survive for optimal cellular functioning. Accordingly, a cell builds up biochemical networks which can transduce information of extracellular and intracellular fluctuations accurately. We consider a generic two-step cascade as a model gene regulatory network containing three regulatory proteins S, X, and Y connected as S→X→Y. The intermediate node X is a stochastic variable, acts as an obstacle, and impedes the information flow from S to Y. We quantify the information that is restricted by X using the tools of information theory and term this as restricted information. In this context, we further propose two measurable quantities, restricted efficiency and information transfer efficiency. The former determines how efficiently X restricts the upstream information coming from S, while the latter computes the efficiency of X to pass the upstream information toward Y. We also quantify the information that is being uniquely transferred from X to Y, which determines the extent of the ability of X to act as a source of information. Our analysis shows that when the signal strength (or mean population of S, 〈s〉) is low, the intermediate X can carry forward the upstream information reliably as well, as it acts as a better source of information, thereby increasing the fidelity of the network. But at the high signal strength, X restricts most of the upstream information, and its ability to act as a source of information gets reduced. This leads to a loss of fidelity of the network.
Collapse
Affiliation(s)
- Mintu Nandi
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700009, India
| | - Suman K Banik
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700009, India
| | - Pinaki Chaudhury
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700009, India
| |
Collapse
|
8
|
Biswas A. Multivariate information processing characterizes fitness of a cascaded gene-transcription machinery. CHAOS (WOODBURY, N.Y.) 2019; 29:063108. [PMID: 31266314 DOI: 10.1063/1.5092447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
We report that a genetic two-step activation cascade processes diverse flavors of information, e.g., synergy, redundancy, and unique information. Our computations measuring reduction in Shannon entropies and reduction in variances produce differently behaving absolute magnitudes of these informational flavors. We find that similarity can be brought in if these terms are evaluated in fractions with respect to corresponding total information. Each of the input signal and final gene-product is found to generate common or redundant information fractions (mostly) to predict each other, whereas they also complement one another to harness synergistic information fraction, predicting the intermediate biochemical species. For an optimally growing signal to maintain fixed steady-state abundance of activated downstream gene-products, the interaction information fractions for this cascade module shift from net-redundancy to information-independence.
Collapse
Affiliation(s)
- Ayan Biswas
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700 009, India
| |
Collapse
|
9
|
Biswas A, Banik SK. Interplay of synergy and redundancy in diamond motif. CHAOS (WOODBURY, N.Y.) 2018; 28:103102. [PMID: 30384656 DOI: 10.1063/1.5044606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
The formalism of partial information decomposition provides a number of independent components which altogether constitute the total information provided by the source variable(s) about the target variable(s). These non-overlapping terms are recognized as unique information, synergistic information, and redundant information. The metric of net synergy conceived as the difference between synergistic and redundant information is capable of detecting effective synergy, effective redundancy, and information independence among stochastic variables. The net synergy can be quantified using appropriate combinations of different Shannon mutual information terms. The utilization of the net synergy in network motifs with the nodes representing different biochemical species, involved in information sharing, uncovers rich store for exciting results. In the current study, we use this formalism to obtain a comprehensive understanding of the relative information processing mechanism in a diamond motif and two of its sub-motifs, namely, bifurcation and integration motif embedded within the diamond motif. The emerging patterns of effective synergy and effective redundancy and their contribution toward ensuring high fidelity information transmission are duly compared in the sub-motifs. Investigation on the metric of net synergy in independent bifurcation and integration motifs are also executed. In all of these computations, the crucial roles played by various systemic time scales, activation coefficients, and signal integration mechanisms at the output of the network topologies are especially emphasized. Following this plan of action, we become confident that the origin of effective synergy and effective redundancy can be architecturally justified by decomposing a diamond motif into bifurcation and integration motif. According to our conjecture, the presence of a common source of fluctuations creates effective redundancy. Our calculations reveal that effective redundancy empowers signal fidelity. Moreover, to achieve this, input signaling species avoids strong interaction with downstream intermediates. This strategy is capable of making the diamond motif noise-tolerant. Apart from the topological features, our study also puts forward the active contribution of additive and multiplicative signal integration mechanisms to nurture effective redundancy and effective synergy.
Collapse
Affiliation(s)
- Ayan Biswas
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700 009, India
| | - Suman K Banik
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700 009, India
| |
Collapse
|
10
|
Lizier JT, Bertschinger N, Jost J, Wibral M. Information Decomposition of Target Effects from Multi-Source Interactions: Perspectives on Previous, Current and Future Work. ENTROPY 2018; 20:e20040307. [PMID: 33265398 PMCID: PMC7512824 DOI: 10.3390/e20040307] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 11/29/2022]
Abstract
The formulation of the Partial Information Decomposition (PID) framework by Williams and Beer in 2010 attracted a significant amount of attention to the problem of defining redundant (or shared), unique and synergistic (or complementary) components of mutual information that a set of source variables provides about a target. This attention resulted in a number of measures proposed to capture these concepts, theoretical investigations into such measures, and applications to empirical data (in particular to datasets from neuroscience). In this Special Issue on “Information Decomposition of Target Effects from Multi-Source Interactions” at Entropy, we have gathered current work on such information decomposition approaches from many of the leading research groups in the field. We begin our editorial by providing the reader with a review of previous information decomposition research, including an overview of the variety of measures proposed, how they have been interpreted and applied to empirical investigations. We then introduce the articles included in the special issue one by one, providing a similar categorisation of these articles into: i. proposals of new measures; ii. theoretical investigations into properties and interpretations of such approaches, and iii. applications of these measures in empirical studies. We finish by providing an outlook on the future of the field.
Collapse
Affiliation(s)
- Joseph T. Lizier
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering & IT, The University of Sydney, NSW 2006, Australia
- Correspondence: ; Tel.:+61-2-9351-3208
| | - Nils Bertschinger
- Frankfurt Institute of Advanced Studies (FIAS) and Goethe University, 60438 Frankfurt am Main, Germany
| | - Jürgen Jost
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Michael Wibral
- MEG Unit, Brain Imaging Center, Goethe University, 60528 Frankfurt, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| |
Collapse
|