1
|
Knippenberg T, Jayaram A, Speck T, Bechinger C. Motility-Induced Clustering of Active Particles under Soft Confinement. PHYSICAL REVIEW LETTERS 2024; 133:048301. [PMID: 39121427 DOI: 10.1103/physrevlett.133.048301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/26/2024] [Indexed: 08/11/2024]
Abstract
We investigate the structural and dynamic properties of active Brownian particles (APs) confined within a soft annulus-shaped channel. Depending on the strength of the confinement and the Péclet number, we observe a novel reentrant behavior that is not present in unconfined systems. Our findings are substantiated by numerical simulations and analytical considerations, revealing that this behavior arises from the strong coupling between the Péclet number and the effective confining dimensionality of the APs. Our work highlights the peculiarities of soft boundaries for APs and how clogging can be avoided under such conditions.
Collapse
|
2
|
Turci F, Jack RL, Wilding NB. Partial and complete wetting of droplets of active Brownian particles. SOFT MATTER 2024; 20:2060-2074. [PMID: 38345308 DOI: 10.1039/d3sm01493b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
We study wetting droplets formed of active Brownian particles in contact with a repulsive potential barrier, in a wedge geometry. Our numerical results demonstrate a transition between partially wet and completely wet states, as a function of the barrier height, analogous to the corresponding surface phase transition in passive fluids. We analyse partially wet configurations characterised by a nonzero contact angle θ between the droplet surface and the barrier including the average density profile and its fluctuations. These findings are compared with two equilibrium systems: a Lennard-Jones fluid and a simple contour model for a liquid-vapour interface. We locate the wetting transition where cos(θ) = 1, and the neutral state where cos(θ) = 0. We discuss the implications of these results for possible definitions of surface tensions in active fluids.
Collapse
Affiliation(s)
- Francesco Turci
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
| | - Robert L Jack
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Nigel B Wilding
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
| |
Collapse
|
3
|
Schiltz-Rouse E, Row H, Mallory SA. Kinetic temperature and pressure of an active Tonks gas. Phys Rev E 2023; 108:064601. [PMID: 38243499 DOI: 10.1103/physreve.108.064601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/06/2023] [Indexed: 01/21/2024]
Abstract
Using computer simulation and analytical theory, we study an active analog of the well-known Tonks gas, where active Brownian particles are confined to a periodic one-dimensional (1D) channel. By introducing the notion of a kinetic temperature, we derive an accurate analytical expression for the pressure and clarify the paradoxical behavior where active Brownian particles confined to 1D exhibit anomalous clustering but no motility-induced phase transition. More generally, this work provides a deeper understanding of pressure in active systems as we uncover a unique link between the kinetic temperature and swim pressure valid for active Brownian particles in higher dimensions.
Collapse
Affiliation(s)
- Elijah Schiltz-Rouse
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hyeongjoo Row
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, California 94720, USA
| | - Stewart A Mallory
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Venkatareddy N, Mandal J, Maiti PK. Effect of confinement and topology: 2-TIPS vs. MIPS. SOFT MATTER 2023; 19:8561-8576. [PMID: 37905347 DOI: 10.1039/d3sm00796k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
2-TIPS (two temperature induced phase separation) refers to the phase separation phenomenon observed in mixtures of active and passive particles which are modelled using scalar activity. The active particles are connected to a thermostat at high temperature while the passive particles are connected to the thermostat at low temperature and the relative temperature difference between "hot" and "cold" particles is taken as the measure of the activity χ of the non-equilibrium system. The study of such binary mixtures of hot and cold particles under various kinds of confinement is an important problem in many physical and biological processes. The nature and extent of phase separation are heavily influenced by the geometry of confinement, activity, and density of the non-equilibrium binary mixture. Investigating such 3D binary mixtures confined by parallel walls, we observe that the active and passive particles phase separate, but the extent of phase separation is reduced compared to bulk phase separation at high densities and enhanced at low densities. However, when the binary mixture of active and passive particles is confined inside a spherical cavity, the phase separation is radial for small radii of the confining sphere and the extent of phase separation is higher compared to their bulk counterparts. Confinement leads to interesting properties in the passive (cold) region like enhanced layering and high compression in the direction parallel to the confining wall. In 2D, both the bulk and confined systems of the binary mixture show a significant decrement in the extent of phase separation at higher densities. This observation is attributed to the trapping of active particles inside the passive cluster, which increases with density. Thus the 2D systems show structures more akin to dense-dilute phase co-existence, which is observed in motility induced phase separation in 2D active systems. The binary mixture constrained on the spherical surface also shows similar phase co-existence. Our analyses reveal that the coexistent densities observed in 2-TIPS on the spherical surface agree with the findings of previous studies on MIPS in active systems on a sphere.
Collapse
Affiliation(s)
- Nayana Venkatareddy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Jaydeep Mandal
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Martin Roca J, Martinez R, martinez pedrero F, Ramirez J, Valeriani C. Dynamical anomalies and structural features of Active Brownian Particles characterised by two repulsive length scales. J Chem Phys 2022; 156:164502. [DOI: 10.1063/5.0087601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this work we study a two-dimensional system composed by Active Brownian Particles (ABPs) interacting via a repulsive potential with two-length-scales, a soft shell and a hard-core. Depending on the ratio between the strength of the soft shell barrier and the activity, we find two regimes: If this ratio is much larger or smaller than 1, the observed behavior is comparable with ABPs interacting via a single length-scale potential. If this ratio is similar to 1, the two length-scales are relevant for both structure and dynamical properties. On the structural side, when the system exhibits a motility induced phase separation, the dense phase is characterised by new and more complex structures compared with the hexatic phase observed in single length-scale systems.On the dynamical side, as far as we are aware, this is the first representation of an anomalous dynamics in active particles.
Collapse
Affiliation(s)
| | | | | | - Jorge Ramirez
- Chemical Engineering, Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Industriales, Spain
| | - Chantal Valeriani
- Estructura de la Materia, Fisica Termica y Electronica, Universidad Complutense de Madrid, Spain
| |
Collapse
|
6
|
Chacón E, Alarcón F, Ramírez J, Tarazona P, Valeriani C. Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles. SOFT MATTER 2022; 18:2646-2653. [PMID: 35302119 DOI: 10.1039/d1sm01493e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Suspensions of active Brownian particles (ABPs) undergo motility-induced phase separation (MIPS) over a wide range of mean density and activity strength, which implies the spontaneous aggregation of particles due to the persistence of their direction of motion, even in the absence of an explicit attraction. Both similarities and qualitative differences have been obtained when the MIPS is analysed in the same terms as a liquid-gas phase coexistence in an equilibrium attractive system. Negative values of the mechanical surface tension have been reported, from the total forces across the interface, while stable fluctuations of the interfacial line could be interpreted as a positive capillary surface tension; in equilibrium liquid surfaces, these two magnitudes are equal. We present here the analysis of 2D-ABP interfaces in terms of the intrinsic density and force profiles, calculated with the particle distance to the instantaneous interfacial line. Our results provide new insight into the origin of MIPS from the local rectification of the random active force on the particles near the interface. As has been reported, this effect acts as an external potential that produces a pressure gradient across the interface, such that the mechanical surface tension of the MIPS cannot be described as that of equilibrium coexisting phases; however, our analysis shows that most of that effect comes from the tightly caged particles at the dense (inner) side of the MIPS interface, rather than from the free moving particles at the outer side that collide with the dense cluster. Moreover, a clear correlation appears between the decay of the hexatic order parameter at the dense slab and the end of the MIPS as the strength of the active force is lowered. We show that, using the strong active forces required for MIPS, the interfacial structure and properties are very similar for ABPs with purely repulsive interactions (the Weeks-Chandler-Andersen-Lennard-Jones (WCA-LJ) model truncated at its minimum) and when the interaction includes a range of the LJ attractive force.
Collapse
Affiliation(s)
- Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid 28049, Spain
| | - Francisco Alarcón
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid 28040, Spain
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, León 37150, Mexico
| | - Jorge Ramírez
- Departamento de Ingeniería Química, ETSI Industriales, Universidad Politécnica de Madrid, Madrid 28006, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049, Spain
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| |
Collapse
|
7
|
Mallory SA, Omar AK, Brady JF. Dynamic overlap concentration scale of active colloids. Phys Rev E 2021; 104:044612. [PMID: 34781543 DOI: 10.1103/physreve.104.044612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/06/2021] [Indexed: 11/07/2022]
Abstract
By introducing the notion of a dynamic overlap concentration scale, we identify additional universal features of the mechanical properties of active colloids. We codify these features by recognizing that the characteristic length scale of an active particle's trajectory, the run length, introduces a concentration scale ϕ^{*}. Large-scale simulations of repulsive active Brownian particles (ABPs) confirm that this run-length dependent concentration, the trajectory-space analog of the overlap concentration in polymer solutions, delineates distinct concentration regimes in which interparticle collisions alter particle trajectories. Using ϕ^{*} and concentration scales associated with colloidal jamming, the mechanical equation of state for ABPs collapses onto a set of principal curves that contain several overlooked features. The inclusion of these features qualitatively alters previous predictions of the behavior for active colloids, as we demonstrate by computing the spinodal for a suspension of purely repulsive ABPs. Our findings suggest that dynamic overlap concentration scales should help unravel the behavior of active and driven systems.
Collapse
Affiliation(s)
- Stewart A Mallory
- Department of Chemistry, The Pennsylvania State University, University Park, Pennyslvania 16802, USA
| | - Ahmad K Omar
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Pirhadi E, Cheng X, Yong X. Dependency of active pressure and equation of state on stiffness of wall. Sci Rep 2021; 11:22204. [PMID: 34773049 PMCID: PMC8590019 DOI: 10.1038/s41598-021-01605-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
Autonomous motion and motility are hallmarks of active matter. Active agents, such as biological cells and synthetic colloidal particles, consume internal energy or extract energy from the environment to generate self-propulsion and locomotion. These systems are persistently out of equilibrium due to continuous energy consumption. It is known that pressure is not always a state function for generic active matter. Torque interaction between active constituents and confinement renders the pressure of the system a boundary-dependent property. The mechanical pressure of anisotropic active particles depends on their microscopic interactions with a solid wall. Using self-propelled dumbbells confined by solid walls as a model system, we perform numerical simulations to explore how variations in the wall stiffness influence the mechanical pressure of dry active matter. In contrast to previous findings, we find that mechanical pressure can be independent of the interaction of anisotropic active particles with walls, even in the presence of intrinsic torque interaction. Particularly, the dependency of pressure on the wall stiffness vanishes when the stiffness is above a critical level. In such a limit, the dynamics of dumbbells near the walls are randomized due to the large torque experienced by the dumbbells, leading to the recovery of pressure as a state variable of density.
Collapse
Affiliation(s)
- Emad Pirhadi
- grid.264260.40000 0001 2164 4508Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902 USA
| | - Xiang Cheng
- grid.17635.360000000419368657Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Xin Yong
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
9
|
Lauersdorf N, Kolb T, Moradi M, Nazockdast E, Klotsa D. Phase behavior and surface tension of soft active Brownian particles. SOFT MATTER 2021; 17:6337-6351. [PMID: 34128024 DOI: 10.1039/d1sm00350j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We study quasi two-dimensional, monodisperse systems of active Brownian particles (ABPs) for a range of activities, stiffnesses, and densities. We develop a microscopic, analytical method for predicting the dense phase structure formed after motility-induced phase separation (MIPS) has occurred, including the dense cluster's area fraction, interparticle pressure, and radius. Our predictions are in good agreement with our Brownian dynamics simulations. We, then, derive a continuum model to investigate the relationship between the predicted interparticle pressure, the swim pressure, and the macroscopic pressure in the momentum equation. We find that formulating the point-wise macroscopic pressure as the interparticle pressure and modeling the particle activity through a spatially variant body force - as opposed to a volume-averaged swim pressure - results in consistent predictions of pressure in both the continuum model and the microscopic theory. This formulation of pressure also results in nearly zero surface tension for the phase separated domains, irrespective of activity, stiffness, and area fraction. Furthermore, using Brownian dynamics simulations and our continuum model, we showed that both the interface width and surface tension, are intrinsic characteristics of the system. On the other hand, if we were to exclude the body force induced by activity, we find that the resulting surface tension values are linearly dependent on the size of the simulation, in contrast to the statistical mechanical definition of surface tension.
Collapse
Affiliation(s)
- Nicholas Lauersdorf
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, USA.
| | - Thomas Kolb
- Department of Chemistry, University of North Carolina at Chapel Hill, USA
| | - Moslem Moradi
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, USA.
| | - Ehssan Nazockdast
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, USA.
| | - Daphne Klotsa
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
10
|
Auschra S, Holubec V, Söker NA, Cichos F, Kroy K. Polarization-density patterns of active particles in motility gradients. Phys Rev E 2021; 103:062601. [PMID: 34271745 DOI: 10.1103/physreve.103.062601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/21/2021] [Indexed: 11/07/2022]
Abstract
The colocalization of density modulations and particle polarization is a characteristic emergent feature of motile active matter in activity gradients. We employ the active-Brownian-particle model to derive precise analytical expressions for the density and polarization profiles of a single Janus-type swimmer in the vicinity of an abrupt activity step. Our analysis allows for an optional (but not necessary) orientation-dependent propulsion speed, as often employed in force-free particle steering. The results agree well with measurement data for a thermophoretic microswimmer presented in the companion paper [Söker et al., Phys. Rev. Lett. 126, 228001 (2021)10.1103/PhysRevLett.126.228001], and they can serve as a template for more complex applications, e.g., to motility-induced phase separation or studies of physical boundaries. The essential physics behind our formal results is robustly captured and elucidated by a schematic two-species "run-and-tumble" model.
Collapse
Affiliation(s)
- Sven Auschra
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany
| | - Viktor Holubec
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany.,Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-180 00 Prague, Czech Republic
| | - Nicola Andreas Söker
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| | - Frank Cichos
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| | - Klaus Kroy
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Speck T, Jayaram A. Vorticity Determines the Force on Bodies Immersed in Active Fluids. PHYSICAL REVIEW LETTERS 2021; 126:138002. [PMID: 33861089 DOI: 10.1103/physrevlett.126.138002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/18/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
When immersed into a fluid of active Brownian particles, passive bodies might start to undergo linear or angular directed motion depending on their shape. Here we exploit the divergence theorem to relate the forces responsible for this motion to the density and current induced by-but far away from-the body. In general, the force is composed of two contributions: due to the strength of the dipolar field component and due to particles leaving the boundary, generating a nonvanishing vorticity of the polarization. We derive and numerically corroborate results for periodic systems, which are fundamentally different from unbounded systems with forces that scale with the area of the system. We demonstrate that vorticity is localized close to the body and to points at which the local curvature changes, enabling the rational design of particle shapes with desired propulsion properties.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Ashreya Jayaram
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
12
|
Hermann S, de las Heras D, Schmidt M. Phase separation of active Brownian particles in two dimensions: anything for a quiet life. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1902585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, Bayreuth, Germany
| | - Daniel de las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
13
|
Fazli Z, Naji A. Active particles with polar alignment in ring-shaped confinement. Phys Rev E 2021; 103:022601. [PMID: 33736018 DOI: 10.1103/physreve.103.022601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
We study steady-state properties of active, nonchiral and chiral Brownian particles with polar alignment and steric interactions confined within a ring-shaped confinement (annulus) in two dimensions. Exploring possible interplays between polar interparticle alignment, geometric confinement and the surface curvature, being incorporated here on minimal levels, we report a surface-population reversal effect, whereby active particles migrate from the outer concave boundary of the annulus to accumulate on its inner convex boundary. This contrasts the conventional picture, implying stronger accumulation of active particles on concave boundaries relative to the convex ones. The population reversal is caused by both particle alignment and surface curvature, disappearing when either of these factors is absent. We explore the ensuing consequences for the chirality-induced current and swim pressure of active particles and analyze possible roles of system parameters, such as the mean number density of particles and particle self-propulsion, chirality, and alignment strengths.
Collapse
Affiliation(s)
- Zahra Fazli
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.,School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
14
|
Speck T. Coexistence of active Brownian disks: van der Waals theory and analytical results. Phys Rev E 2021; 103:012607. [PMID: 33601548 DOI: 10.1103/physreve.103.012607] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/06/2021] [Indexed: 11/07/2022]
Abstract
At thermal equilibrium, intensive quantities like temperature and pressure have to be uniform throughout the system, restricting inhomogeneous systems composed of different phases. The paradigmatic example is the coexistence of vapor and liquid, a state that can also be observed for active Brownian particles steadily driven away from equilibrium. Recently, a strategy has been proposed that allows to predict phase equilibria of active particles [Solon et al., Phys. Rev. E 97, 020602(R) (2018)2470-004510.1103/PhysRevE.97.020602]. Here we elaborate on this strategy and formulate it in the framework of a van der Waals theory for active disks. For a given equation of state, we derive the effective free energy analytically and show that it yields coexisting densities in very good agreement with numerical results. We discuss the interfacial tension and the relation to Cahn-Hilliard models.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
15
|
Guioth J, Bertin E. Nonequilibrium grand-canonical ensemble built from a physical particle reservoir. Phys Rev E 2021; 103:022107. [PMID: 33736010 DOI: 10.1103/physreve.103.022107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/12/2021] [Indexed: 11/07/2022]
Abstract
We introduce a nonequilibrium grand-canonical ensemble defined by considering the stationary state of a driven system of particles put in contact with a particle reservoir. When an additivity assumption holds for the large deviation function of density, a chemical potential of the reservoir can be defined. The grand-canonical distribution then takes a form similar to the equilibrium one. At variance with equilibrium, though, the probability weight is "renormalized" by a contribution coming from the contact, with respect to the canonical probability weight of the isolated system. A formal grand-canonical potential can be introduced in terms of a scaled cumulant generating function, defined as the Legendre-Fenchel transform of the large deviation function of density. The role of the formal Legendre parameter can be played, physically, by the chemical potential of the reservoir when the latter can be defined, or by a potential energy difference applied between the system and the reservoir. Static fluctuation-response relations naturally follow from the large deviation structure. Some of the results are illustrated on two different explicit examples, a gas of noninteracting active particles and a lattice model of interacting particles.
Collapse
Affiliation(s)
- Jules Guioth
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, England, United Kingdom
| | - Eric Bertin
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| |
Collapse
|
16
|
Somasundar A, Sen A. Chemically Propelled Nano and Micromotors in the Body: Quo Vadis? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007102. [PMID: 33432722 DOI: 10.1002/smll.202007102] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Indexed: 05/26/2023]
Abstract
The active delivery of drugs to disease sites in response to specific biomarkers is a holy grail in theranostics. If successful, it would greatly diminish the therapeutic dosage and reduce collateral cytotoxicity. In this context, the development of nano and micromotors that are able to harvest local energy to move directionally is an important breakthrough. However, serious hurdles remain before such active systems can be employed in vivo in therapeutic applications. Such motors and their energy sources must be safe and biocompatible, they should be able to move through complex body fluids, and have the ability to reach specific cellular targets. Given the complexity in the design and deployment of nano and micromotors, it is also critically important to show that they are significantly superior to inactive "smart" nanoparticles in theranostics. Furthermore, receiving regulatory approval requires the ability to scale-up the production of nano and micromotors with uniformity in structure, function, and activity. In this essay, the limitations of the current nano and micromotors and the issues that need to be resolved before such motors are likely to find theranostic applications are discussed.
Collapse
Affiliation(s)
- Ambika Somasundar
- Departments of Chemistry and Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ayusman Sen
- Departments of Chemistry and Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
17
|
Das S, Ghosh S, Chelakkot R. Aggregate morphology of active Brownian particles on porous, circular walls. Phys Rev E 2020; 102:032619. [PMID: 33075888 DOI: 10.1103/physreve.102.032619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
We study the motility-induced aggregation of active Brownian particles (ABPs) on a porous, circular wall. We observe that the morphology of aggregated dense-phase on a static wall depends on the wall porosity, particle motility, and the radius of the circular wall. Our analysis reveals two morphologically distinct, dense aggregates; a connected dense cluster that spreads uniformly on the circular wall and a localized cluster that breaks the rotational symmetry of the system. These distinct morphological states are similar to the macroscopic structures observed in aggregates on planar, porous walls. We systematically analyze the parameter regimes where the different morphological states are observed. We further extend our analysis to motile circular rings. We show that the motile ring propels almost ballistically due to the force applied by the active particles when they form a localized cluster, whereas it moves diffusively when the active particles form a continuous cluster. This property demonstrates the possibility of extracting useful work from a system of ABPs, even without artificially breaking the rotational symmetry.
Collapse
Affiliation(s)
- Suchismita Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sounok Ghosh
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
18
|
Das S, Chelakkot R. Morphological transitions of active Brownian particle aggregates on porous walls. SOFT MATTER 2020; 16:7250-7255. [PMID: 32744272 DOI: 10.1039/d0sm00797h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Motility-induced wall aggregation of Active Brownian Particles (ABPs) is a well-studied phenomenon. Here, we study the aggregation of ABPs on porous walls, which allows the particles to penetrate through at large motility. We show that the active aggregates undergo a morphological transition from a connected dense-phase to disconnected droplets with an increase in wall porosity and the particle self-motility, similar to wetting-dewetting transitions in equilibrium fluids. We show that both morphologically distinct states are stable, and independent of initial conditions at least in some parameter regions. Our analysis reveals that changes in wall porosity affect the intrinsic properties of the aggregates and changes the effective wall-aggregate interfacial tension, consistent with the appearance of the morphological transition. Accordingly, a close analysis of the density, as well as orientational distribution, indicates that the underlying reason for such morphological transitions is not necessarily specific to the systems with porous walls, and it can be possible to observe in a larger class of confined, active systems by tuning the properties of confining walls.
Collapse
Affiliation(s)
- Suchismita Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India.
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
19
|
Zakine R, Zhao Y, Knežević M, Daerr A, Kafri Y, Tailleur J, van Wijland F. Surface Tensions between Active Fluids and Solid Interfaces: Bare vs Dressed. PHYSICAL REVIEW LETTERS 2020; 124:248003. [PMID: 32639798 DOI: 10.1103/physrevlett.124.248003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We analyze the surface tension exerted at the interface between an active fluid and a solid boundary in terms of tangential forces. Focusing on active systems known to possess an equation of state for the pressure, we show that interfacial forces are of a more complex nature. Using a number of macroscopic setups, we show that the surface tension is a combination of an equation-of-state abiding part and of setup-dependent contributions. The latter arise from generic setup-dependent steady currents which "dress" the measurement of the "bare" surface tension. The former shares interesting properties with its equilibrium counterpart, and can be used to generalize the Young-Laplace law to active systems. Finally, we show how a suitably designed probe can directly access this bare surface tension, which can also be computed using a generalized virial formula.
Collapse
Affiliation(s)
- R Zakine
- Université Paris Diderot, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Y Zhao
- Université Paris Diderot, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - M Knežević
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
| | - A Daerr
- Université Paris Diderot, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Y Kafri
- Department of Physics, Technion, Haifa 32000, Israel
| | - J Tailleur
- Université Paris Diderot, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - F van Wijland
- Université Paris Diderot, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
20
|
van der Meer B, Prymidis V, Dijkstra M, Filion L. Predicting the phase behavior of mixtures of active spherical particles. J Chem Phys 2020; 152:144901. [DOI: 10.1063/5.0002279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Berend van der Meer
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Vasileios Prymidis
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Laura Filion
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
21
|
Abstract
Nanotherapies based on micelles, liposomes, polymersomes, nanocapsules, magnetic nanoparticles, and noble metal nanoparticles have been at the forefront of drug delivery in the past few decades. Some of these nanopharmaceuticals have been commercially applied to treat a wide range of diseases, from dry eye syndrome to cancer. However, the majority involve particles that are passive, meaning that they do not change shape, and they lack motility; the static features can limit their therapeutic efficacy. In this review, we take a critical look at an emerging field that seeks to utilize active matter for therapeutics. In this context, active matter can be broadly referred to as micro or nanosized constructs that energetically react with their environment or external fields and translate, rotate, vibrate or change shape. Essentially, the recent literature suggests that such particles could significantly augment present-day drug delivery, by enhancing transport and increasing permeability across anatomical barriers by transporting drugs within solid tumor microenvironments or disrupting cardiovascular plaque. We discuss examples of such particles and link the transport and permeability properties of active matter to potential therapeutic applications in the context of two major diseases, namely cancer and heart disease. We also discuss potential challenges, opportunities, and translational hurdles.
Collapse
Affiliation(s)
- Arijit Ghosh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Weinan Xu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Neha Gupta
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
22
|
Abstract
Large-scale collective behavior in suspensions of active particles can be understood from the balance of statistical forces emerging beyond the direct microscopic particle interactions. Here we review some aspects of the collective forces that can arise in suspensions of self-propelled active Brownian particles: wall forces under confinement, interfacial forces, and forces on immersed bodies mediated by the suspension. Even for non-aligning active particles, these forces are intimately related to a non-uniform polarization of particle orientations induced by walls and bodies, or inhomogeneous density profiles. We conclude by pointing out future directions and promising areas for the application of collective forces in synthetic active matter, as well as their role in living active matter.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany.
| |
Collapse
|
23
|
Abstract
It has been discovered that active matter generates novel physical quantities such as the swim pressure. This quantity arises from the exchange of extra momentum between active particles and the boundaries of the system. Given its origin, this quantity can exist at different scales; hence microorganisms and larger organisms like fish or birds generate their own swim pressure. For larger organisms or for high swimming speeds, inertia cannot necessarily be neglected; hence in this paper, we start by calculating analytically the effect of finite translational and rotational particles' inertia on the diffusion of a system of noninteracting spherical active Brownian particles. From this analysis, an enhanced diffusion coefficient due to rotational inertia is obtained, and an alternative effective persistence length and an alternative reorientation time, both sensitive to rotational inertia, are also identified. Afterwards, and to see the implications of finite inertia on bulk properties, the pressure of this system is elucidated by calculating its respective swim and Reynolds pressures. It is found that their sum becomes asymptotically sensitive to the square root of its rotational inertia. To validate our analytical results, Langevin dynamics simulations are also performed showing an excellent agreement between our theoretical predictions and the numerical results.
Collapse
Affiliation(s)
- Mario Sandoval
- Department of Physics, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| |
Collapse
|
24
|
Omar AK, Wang ZG, Brady JF. Microscopic origins of the swim pressure and the anomalous surface tension of active matter. Phys Rev E 2020; 101:012604. [PMID: 32069575 DOI: 10.1103/physreve.101.012604] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 06/10/2023]
Abstract
The unique pressure exerted by active particles-the "swim" pressure-has proven to be a useful quantity in explaining many of the seemingly confounding behaviors of active particles. However, its use has also resulted in some puzzling findings including an extremely negative surface tension between phase separated active particles. Here, we demonstrate that this contradiction stems from the fact that the swim pressure is not a true pressure. At a boundary or interface, the reduction in particle swimming generates a net active force density-an entirely self-generated body force. The pressure at the boundary, which was previously identified as the swim pressure, is in fact an elevated (relative to the bulk) value of the traditional particle pressure that is generated by this interfacial force density. Recognizing this unique mechanism for stress generation allows us to define a much more physically plausible surface tension. We clarify the utility of the swim pressure as an "equivalent pressure" (analogous to those defined from electrostatic and gravitational body forces) and the conditions in which this concept can be appropriately applied.
Collapse
Affiliation(s)
- Ahmad K Omar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
25
|
Das S, Gompper G, Winkler RG. Local stress and pressure in an inhomogeneous system of spherical active Brownian particles. Sci Rep 2019; 9:6608. [PMID: 31036857 PMCID: PMC6488661 DOI: 10.1038/s41598-019-43077-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/15/2019] [Indexed: 02/05/2023] Open
Abstract
The stress of a fluid on a confining wall is given by the mechanical wall forces, independent of the nature of the fluid being passive or active. At thermal equilibrium, an equation of state exists and stress is likewise obtained from intrinsic bulk properties; even more, stress can be calculated locally. Comparable local descriptions for active systems require a particular consideration of active forces. Here, we derive expressions for the stress exerted on a local volume of a systems of spherical active Brownian particles (ABPs). Using the virial theorem, we obtain two identical stress expressions, a stress due to momentum flux across a hypothetical plane, and a bulk stress inside of the local volume. In the first case, we obtain an active contribution to momentum transport in analogy to momentum transport in an underdamped passive system, and we introduce an active momentum. In the second case, a generally valid expression for the swim stress is derived. By simulations, we demonstrate that the local bulk stress is identical to the wall stress of a confined system for both, non-interacting ABPs as well as ABPs with excluded-volume interactions. This underlines the existence of an equation of state for a system of spherical ABPs. Most importantly, our calculations demonstrated that active stress is not a wall (boundary) effect, but is caused by momentum transport. We demonstrate that the derived stress expression permits the calculation of the local stress in inhomogeneous systems of ABPs.
Collapse
Affiliation(s)
- Shibananda Das
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
26
|
Epstein JM, Klymko K, Mandadapu KK. Statistical mechanics of transport processes in active fluids. II. Equations of hydrodynamics for active Brownian particles. J Chem Phys 2019; 150:164111. [DOI: 10.1063/1.5054912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Jeffrey M. Epstein
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Katherine Klymko
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Kranthi K. Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| |
Collapse
|
27
|
Jack RL, Wirnsberger P, Reinhardt A. Microscopic analysis of thermo-orientation in systems of off-centre Lennard-Jones particles. J Chem Phys 2019; 150:134501. [PMID: 30954044 DOI: 10.1063/1.5089541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
When fluids of anisotropic molecules are placed in temperature gradients, the molecules may align themselves along the gradient: this is called thermo-orientation. We discuss the theory of this effect in a fluid of particles that interact by a spherically symmetric potential, where the particles' centres of mass do not coincide with their interaction centres. Starting from the equations of motion of the molecules, we show how a simple assumption of local equipartition of energy can be used to predict the thermo-orientation effect, recovering the result of Wirnsberger et al. [Phys. Rev. Lett. 120, 226001 (2018)]. Within this approach, we show that for particles with a single interaction centre, the thermal centre of the molecule must coincide with the interaction centre. The theory also explains the coupling between orientation and kinetic energy that is associated with this non-Boltzmann distribution. We discuss deviations from this local equipartition assumption, showing that these can occur in linear response to a temperature gradient. We also present numerical simulations showing significant deviations from the local equipartition predictions, which increase as the centre of mass of the molecule is displaced further from its interaction centre.
Collapse
Affiliation(s)
- Robert L Jack
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Peter Wirnsberger
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Aleks Reinhardt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
28
|
Guioth J, Bertin E. Lack of an equation of state for the nonequilibrium chemical potential of gases of active particles in contact. J Chem Phys 2019; 150:094108. [DOI: 10.1063/1.5085740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jules Guioth
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- CNRS, LIPhy, Université Grenoble Alpes, F-38000 Grenoble, France
| | - Eric Bertin
- CNRS, LIPhy, Université Grenoble Alpes, F-38000 Grenoble, France
| |
Collapse
|
29
|
Krinninger P, Schmidt M. Power functional theory for active Brownian particles: General formulation and power sum rules. J Chem Phys 2019; 150:074112. [DOI: 10.1063/1.5061764] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Philip Krinninger
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
30
|
Daddi-Moussa-Ider A, Goh S, Liebchen B, Hoell C, Mathijssen AJTM, Guzmán-Lastra F, Scholz C, Menzel AM, Löwen H. Membrane penetration and trapping of an active particle. J Chem Phys 2019; 150:064906. [DOI: 10.1063/1.5080807] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Segun Goh
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | | | - Francisca Guzmán-Lastra
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Facultad de Ciencias, Universidad Mayor, Ave. Manuel Montt 367, Providencia, Santiago de Chile, Chile
| | - Christian Scholz
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
31
|
Guioth J, Bertin E. Large deviations and chemical potential in bulk-driven systems in contact. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/123/10002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Chen YF, Wang Z, Chu KC, Chen HY, Sheng YJ, Tsao HK. Hydrodynamic interaction induced breakdown of the state properties of active fluids. SOFT MATTER 2018; 14:5319-5326. [PMID: 29900446 DOI: 10.1039/c8sm00881g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mechanical pressure of active fluids in which swimmers are modeled by soft run-and-tumble spheres is investigated by dissipative particle dynamics simulations. The incremental pressure (Π) with respect to the system pressure with inactive swimmers comprises the direct contribution of the swimmers (π) and the indirect contribution of fluids associated with hydrodynamic interactions (HIs). The pressure can be determined from the bulk and confining wall and the former is always less than the latter. The π of dilute active dispersions is proportional to their active diffusivity while Π grows generally with propulsive force and run time. However, Π is always substantially less than π because of negative contributions to pressure by HIs. The wall pressure depends on the swimmer-wall interactions, verifying that pressure is not a state function for active spheres due to the HIs. Owing to the distinct flow patterns, Π varies with the swim-type (pusher and puller) subject to the same run-and-tumble parameters at high concentrations.
Collapse
Affiliation(s)
- Yen-Fu Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, Republic of China.
| | | | | | | | | | | |
Collapse
|
33
|
Jamali T, Naji A. Active fluids at circular boundaries: swim pressure and anomalous droplet ripening. SOFT MATTER 2018; 14:4820-4834. [PMID: 29845128 DOI: 10.1039/c8sm00338f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave circular boundaries are used to model a fixed inclusion immersed in an active bath and a cavity (or container) enclosing the active particles, respectively. We first present a detailed analysis of the role of convex versus concave boundary curvature and of the chirality of active particles in their spatial distribution, chirality-induced currents, and the swim pressure they exert on the bounding surfaces. The results will then be used to predict the mechanical equilibria of suspended fluid enclosures (generically referred to as 'droplets') in a bulk with active particles being present either inside the bulk fluid or within the suspended droplets. We show that, while droplets containing active particles behave in accordance with standard capillary paradigms when suspended in a normal bulk, those containing a normal fluid exhibit anomalous behaviors when suspended in an active bulk. In the latter case, the excess swim pressure results in non-monotonic dependence of the inside droplet pressure on the droplet radius; hence, revealing an anomalous regime of behavior beyond a threshold radius, in which the inside droplet pressure increases upon increasing the droplet size. Furthermore, for two interconnected droplets, mechanical equilibrium can occur also when the droplets have different sizes. We thus identify a regime of anomalous droplet ripening, where two unequal-sized droplets can reach a final state of equal size upon interconnection, in stark contrast with the standard Ostwald ripening phenomenon, implying shrinkage of the smaller droplet in favor of the larger one.
Collapse
Affiliation(s)
- Tayeb Jamali
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.
| | | |
Collapse
|
34
|
Affiliation(s)
| | - Chantal Valeriani
- Departamento de Física Aplicada I, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Angelo Cacciuto
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
35
|
Wang Z, Chen YF, Chen HY, Sheng YJ, Tsao HK. Mechanical pressure, surface excess, and polar order of a dilute rod-like nanoswimmer suspension: role of swimmer-wall interactions. SOFT MATTER 2018; 14:2906-2914. [PMID: 29589848 DOI: 10.1039/c7sm02372c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mechanical pressure, surface excess, and polar order of a dilute rod-like nanoswimmer suspension confined by two parallel plates are explored by dissipative particle dynamics. The accumulation and preferred orientation of swimmers near the walls are distinctly shown through the density and polar order distributions for various active force, Fa, values and rod lengths. As Fa is increased, it is interesting to observe that there exists a maximum of the polar order, revealing that the dominant mechanism of the swimmer behavior can be altered by the coupling between the active force and the rod-wall interaction. As a result, the influences of the active force on the swim pressure Π(w)a contributed by the swimmers directly and the surface excess Γ* can be classified into two scaling regimes, natural rotation (weak propulsion) and forced rotation (strong propulsion). Π(w)a and Γ* are proportional to Fa2 in the former regime but become proportional to Fa in the latter regime. For all rod-wall repulsions, the swim pressure of active rods in confined systems Π(w)a always differs from that in unbounded systems Π(b)a which is simply proportional to Fa2 associated with the active diffusivity. That is, unlike thermal equilibrium systems, Π(w)a is not a state function because of the presence of the wall-torque.
Collapse
Affiliation(s)
- Zhengjia Wang
- Condensed Matter Science and Technology Institute, School of Science, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | | | | | | | | |
Collapse
|
36
|
Hermann S, Schmidt M. Active ideal sedimentation: exact two-dimensional steady states. SOFT MATTER 2018; 14:1614-1621. [PMID: 29411843 DOI: 10.1039/c7sm02515g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.
Collapse
Affiliation(s)
- Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany.
| | | |
Collapse
|
37
|
Baek Y, Solon AP, Xu X, Nikola N, Kafri Y. Generic Long-Range Interactions Between Passive Bodies in an Active Fluid. PHYSICAL REVIEW LETTERS 2018; 120:058002. [PMID: 29481190 DOI: 10.1103/physrevlett.120.058002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 06/08/2023]
Abstract
A single nonspherical body placed in an active fluid generates currents via breaking of time-reversal symmetry. We show that, when two or more passive bodies are placed in an active fluid, these currents lead to long-range interactions. Using a multipole expansion, we characterize their leading-order behaviors in terms of single-body properties and show that they decay as a power law with the distance between the bodies, are anisotropic, and do not obey an action-reaction principle. The interactions lead to rich dynamics of the bodies, illustrated by the spontaneous synchronized rotation of pinned nonchiral bodies and the formation of traveling bound pairs. The occurrence of these phenomena depends on tunable properties of the bodies, thus opening new possibilities for self-assembly mediated by active fluids.
Collapse
Affiliation(s)
- Yongjoo Baek
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Alexandre P Solon
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Xinpeng Xu
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Department of Physics, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, People's Republic of China
| | - Nikolai Nikola
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yariv Kafri
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
38
|
Härtel A, Richard D, Speck T. Three-body correlations and conditional forces in suspensions of active hard disks. Phys Rev E 2018; 97:012606. [PMID: 29448434 DOI: 10.1103/physreve.97.012606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Indexed: 06/08/2023]
Abstract
Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to the direction of propulsion and the positions of the surrounding particles. We further relate our theory to the effective swimming speed of the active disks, which is relevant for the physics of MIPS. To test and validate our theory, we additionally run particle-resolved computer simulations, for which we explicitly calculate the three-body forces. In this context, we discuss the modeling of active Brownian swimmers with nearly hard interaction potentials. We find very good agreement between our simulations and numerical solutions of our theory, especially for the nonequilibrium pair-distribution function. For our analytical results, we carefully discuss their range of validity in the context of the different levels of approximation we applied. This discussion allows us to study the individual contribution of particles to three-body forces and to the emerging structure. Thus, our work sheds light on the collective behavior, provides the basis for further studies of correlations in active suspensions, and makes a step towards an emerging liquid state theory.
Collapse
Affiliation(s)
- Andreas Härtel
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - David Richard
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| |
Collapse
|
39
|
Sandford C, Grosberg AY. Memory effects in active particles with exponentially correlated propulsion. Phys Rev E 2018; 97:012602. [PMID: 29448418 DOI: 10.1103/physreve.97.012602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 06/08/2023]
Abstract
The Ornstein-Uhlenbeck particle (OUP) model imagines a microscopic swimmer propelled by an active force which is correlated with itself on a finite time scale. Here we investigate the influence of external potentials on an ideal suspension of OUPs, in both one and two spatial dimensions, with particular attention paid to the pressure exerted on "confining walls." We employ a mathematical connection between the local density of OUPs and the statistics of their propulsion force to demonstrate the existence of an equation of state in one dimension. In higher dimensions we show that active particles generate a nonconservative force field in the surrounding medium. A simplified far-from-equilibrium model is proposed to account for OUP behavior in the vicinity of potentials. Building on this, we interpret simulations of OUPs in more complicated situations involving asymmetrical and spatially curved potentials, and characterize the resulting inhomogeneous stresses in terms of competing active length scales.
Collapse
Affiliation(s)
- Cato Sandford
- Department of Physics and Center for Soft Matter Research, New York University, 726 Broadway, New York, New York 10003, USA
| | - Alexander Y Grosberg
- Department of Physics and Center for Soft Matter Research, New York University, 726 Broadway, New York, New York 10003, USA
| |
Collapse
|
40
|
Mandal D, Klymko K, DeWeese MR. Entropy Production and Fluctuation Theorems for Active Matter. PHYSICAL REVIEW LETTERS 2017; 119:258001. [PMID: 29303303 DOI: 10.1103/physrevlett.119.258001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 05/18/2023]
Abstract
Active biological systems reside far from equilibrium, dissipating heat even in their steady state, thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics. In this Letter, we have extended the emerging framework of stochastic thermodynamics to active matter. In particular, for the active Ornstein-Uhlenbeck model, we have provided consistent definitions of thermodynamic quantities such as work, energy, heat, entropy, and entropy production at the level of single, stochastic trajectories and derived related fluctuation relations. We have developed a generalization of the Clausius inequality, which is valid even in the presence of the non-Hamiltonian dynamics underlying active matter systems. We have illustrated our results with explicit numerical studies.
Collapse
Affiliation(s)
- Dibyendu Mandal
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Katherine Klymko
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, California 94720, USA
- Redwood Center for Theoretical Neuroscience and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
41
|
Rodenburg J, Dijkstra M, van Roij R. Van't Hoff's law for active suspensions: the role of the solvent chemical potential. SOFT MATTER 2017; 13:8957-8963. [PMID: 29149229 DOI: 10.1039/c7sm01432e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We extend Van't Hoff's law for the osmotic pressure to a suspension of active Brownian particles. The propelled particles exert a net reaction force on the solvent, and thereby either drive a measurable solvent flow from the connecting solvent reservoir through the semipermeable membrane, or increase the osmotic pressure and cause the suspension to rise to heights as large as micrometers for experimentally realized microswimmers described in the literature. The increase in osmotic pressure is caused by the background solvent being, in contrast to passive suspensions, no longer at the chemical potential of the solvent reservoir. The difference in solvent chemical potentials depends on the colloid-membrane interaction potential, which implies that the osmotic pressure is a state function of a state that itself is influenced by the membrane potential.
Collapse
Affiliation(s)
- Jeroen Rodenburg
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | | | | |
Collapse
|
42
|
Klymko K, Mandal D, Mandadapu KK. Statistical mechanics of transport processes in active fluids: Equations of hydrodynamics. J Chem Phys 2017; 147:194109. [PMID: 29166113 DOI: 10.1063/1.4997091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The equations of hydrodynamics including mass, linear momentum, angular momentum, and energy are derived by coarse-graining the microscopic equations of motion for systems consisting of rotary dumbbells driven by internal torques. In deriving the balance of linear momentum, we find that the symmetry of the stress tensor is broken due to the presence of non-zero torques on individual particles. The broken symmetry of the stress tensor induces internal spin in the fluid and leads us to consider the balance of internal angular momentum in addition to the usual moment of momentum. In the absence of spin, the moment of momentum is the same as the total angular momentum. In deriving the form of the balance of total angular momentum, we find the microscopic expressions for the couple stress tensor that drives the spin field. We show that the couple stress contains contributions from both intermolecular interactions and the active forces. The presence of spin leads to the idea of balance of moment of inertia due to the constant exchange of particles in a small neighborhood around a macroscopic point. We derive the associated balance of moment of inertia at the macroscale and identify the moment of inertia flux that induces its transport. Finally, we obtain the balances of total and internal energy of the active fluid and identify the sources of heat and heat fluxes in the system.
Collapse
Affiliation(s)
- Katherine Klymko
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | - Dibyendu Mandal
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
| | - Kranthi K Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
43
|
Levis D, Codina J, Pagonabarraga I. Active Brownian equation of state: metastability and phase coexistence. SOFT MATTER 2017; 13:8113-8119. [PMID: 29105717 DOI: 10.1039/c7sm01504f] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a result of the competition between self-propulsion and excluded volume interactions, purely repulsive self-propelled spherical particles undergo a motility-induced phase separation (MIPS). We carry out a systematic computational study, considering several interaction potentials, systems confined by hard walls or with periodic boundary conditions, and different initial conditions. This approach allows us to identify that, despite its non-equilibrium nature, the equations of state of Active Brownian Particles (ABP) across MIPS verify the characteristic properties of first-order liquid-gas phase transitions, meaning, equality of pressure of the coexisting phases once a nucleation barrier has been overcome and, in the opposite case, hysteresis around the transition as long as the system remains in the metastable region. Our results show that the equations of state of ABPs account for their phase behaviour, providing a firm basis to describe MIPS as an equilibrium-like phase transition.
Collapse
Affiliation(s)
- Demian Levis
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain.
| | | | | |
Collapse
|
44
|
Paliwal S, Prymidis V, Filion L, Dijkstra M. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles. J Chem Phys 2017; 147:084902. [DOI: 10.1063/1.4989764] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Siddharth Paliwal
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Vasileios Prymidis
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Laura Filion
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
45
|
Marini Bettolo Marconi U, Maggi C, Paoluzzi M. Pressure in an exactly solvable model of active fluid. J Chem Phys 2017; 147:024903. [DOI: 10.1063/1.4991731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Claudio Maggi
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Piazzale A. Moro 2, I-00185 Roma, Italy
| | - Matteo Paoluzzi
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
46
|
Joyeux M. Recovery of mechanical pressure in a gas of underdamped active dumbbells with Brownian noise. Phys Rev E 2017; 95:052603. [PMID: 28618500 DOI: 10.1103/physreve.95.052603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Indexed: 11/07/2022]
Abstract
In contrast with a gas at thermodynamic equilibrium, the mean force exerted on a wall by a gas of active particles usually depends on the confining potential, thereby preventing a proper definition of mechanical pressure. In this paper, we investigate numerically the properties of a gas of underdamped self-propelled dumbbells subject to Brownian noise of increasing intensity, in order to understand how the notion of pressure is recovered as noise progressively masks the effects of self-propulsion and the system approaches thermodynamic equilibrium. The simulations performed for a mobile asymmetric wall separating two chambers containing an equal number of active dumbbells highlight some subtle and unexpected properties of the system. First, Brownian noise of moderate intensity is sufficient to let mean forces equilibrate for small values of the damping coefficient, while much stronger noise is required for larger values of the damping coefficient. Moreover, the displacement of the mean position of the wall upon increase of the intensity of the noise is not necessarily monotonous and may instead display changes of direction. Both facts actually reflect the existence of several mechanisms leading to the rupture of force balance, which tend to displace the mean position of the wall towards different directions and display different robustness against an increase of the intensity of Brownian noise. This work therefore provides a clear illustration of the fact that driving an autonomous system towards (or away from) thermodynamic equilibrium may not be a straightforward process, but may instead proceed through the variations of the relative weights of several conflicting mechanisms.
Collapse
Affiliation(s)
- Marc Joyeux
- LIPHY, Université Grenoble Alpes and CNRS, Grenoble, France
| |
Collapse
|
47
|
Steffenoni S, Falasco G, Kroy K. Microscopic derivation of the hydrodynamics of active-Brownian-particle suspensions. Phys Rev E 2017; 95:052142. [PMID: 28618517 DOI: 10.1103/physreve.95.052142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Indexed: 06/07/2023]
Abstract
We derive the hydrodynamic equations of motion for a fluid of active particles described by underdamped Langevin equations that reduce to the active-Brownian-particle model, in the overdamped limit. The contraction into the hydrodynamic description is performed by locally averaging the particle dynamics with the nonequilibrium many-particle probability density, whose formal expression is found in the physically relevant limit of high friction through a multiple-time-scale analysis. This approach permits us to identify the conditions under which self-propulsion can be subsumed into the fluid stress tensor and thus to define systematically and unambiguously the local pressure of the active fluid.
Collapse
Affiliation(s)
- Stefano Steffenoni
- Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, Germany
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Gianmaria Falasco
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Klaus Kroy
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| |
Collapse
|
48
|
Redner GS, Wagner CG, Baskaran A, Hagan MF. Classical Nucleation Theory Description of Active Colloid Assembly. PHYSICAL REVIEW LETTERS 2016; 117:148002. [PMID: 27740811 DOI: 10.1103/physrevlett.117.148002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 06/06/2023]
Abstract
Nonaligning self-propelled particles with purely repulsive excluded volume interactions undergo athermal motility-induced phase separation into a dilute gas and a dense cluster phase. Here, we use enhanced sampling computational methods and analytic theory to examine the kinetics of formation of the dense phase. Despite the intrinsically nonequilibrium nature of the phase transition, we show that the kinetics can be described using an approach analogous to equilibrium classical nucleation theory, governed by an effective free energy of cluster formation with identifiable bulk and surface terms. The theory captures the location of the binodal, nucleation rates as a function of supersaturation, and the cluster size distributions below the binodal, while discrepancies in the metastable region reveal additional physics about the early stages of active crystal formation. The success of the theory shows that a framework similar to equilibrium thermodynamics can be obtained directly from the microdynamics of an active system, and can be used to describe the kinetics of evolution toward nonequilibrium steady states.
Collapse
Affiliation(s)
- Gabriel S Redner
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Caleb G Wagner
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
49
|
Prymidis V, Paliwal S, Dijkstra M, Filion L. Vapour-liquid coexistence of an active Lennard-Jones fluid. J Chem Phys 2016; 145:124904. [DOI: 10.1063/1.4963191] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Vasileios Prymidis
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Siddharth Paliwal
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Laura Filion
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
50
|
Nikola N, Solon AP, Kafri Y, Kardar M, Tailleur J, Voituriez R. Active Particles with Soft and Curved Walls: Equation of State, Ratchets, and Instabilities. PHYSICAL REVIEW LETTERS 2016; 117:098001. [PMID: 27610886 DOI: 10.1103/physrevlett.117.098001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 06/06/2023]
Abstract
We study, from first principles, the pressure exerted by an active fluid of spherical particles on general boundaries in two dimensions. We show that, despite the nonuniform pressure along curved walls, an equation of state is recovered upon a proper spatial averaging. This holds even in the presence of pairwise interactions between particles or when asymmetric walls induce ratchet currents, which are accompanied by spontaneous shear stresses on the walls. For flexible obstacles, the pressure inhomogeneities lead to a modulational instability as well as to the spontaneous motion of short semiflexible filaments. Finally, we relate the force exerted on objects immersed in active baths to the particle flux they generate around them.
Collapse
Affiliation(s)
| | - Alexandre P Solon
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yariv Kafri
- Department of Physics, Technion, Haifa 32000, Israel
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS /UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
- Laboratoire Jean Perrin, UMR 8237 CNRS /UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
| |
Collapse
|