1
|
Bae S, Noack MM, Yager KG. Surface enrichment dictates block copolymer orientation. NANOSCALE 2023; 15:6901-6912. [PMID: 36876525 DOI: 10.1039/d3nr00095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Orientation of block copolymer (BCP) morphology in thin films is critical to applications as nanostructured coatings. Despite being well-studied, the ability to control BCP orientation across all possible block constituents remains challenging. Here, we deploy coarse-grained molecular dynamics simulations to study diblock copolymer ordering in thin films, focusing on chain makeup, substrate surface energy, and surface tension disparity between the two constituent blocks. We explore the multi-dimensional parameter space of ordering using a machine-learning approach, where an autonomous loop using a Gaussian process (GP) control algorithm iteratively selects high-value simulations to compute. The GP kernel was engineered to capture known symmetries. The trained GP model serves as both a complete map of system response, and a robust means of extracting material knowledge. We demonstrate that the vertical orientation of BCP phases depends on several counter-balancing energetic contributions, including entropic and enthalpic material enrichment at interfaces, distortion of morphological objects through the film depth, and of course interfacial energies. BCP lamellae are found more resistant to these effects, and thus more robustly form vertical orientations across a broad range of conditions; while BCP cylinders are found to be highly sensitive to surface tension disparity.
Collapse
Affiliation(s)
- Suwon Bae
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | - Marcus M Noack
- The Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
| |
Collapse
|
2
|
Huo Z, Skala SJ, Falck LR, Laaser JE, Statt A. Computational Study of Mechanochemical Activation in Nanostructured Triblock Copolymers. ACS POLYMERS AU 2022; 2:467-477. [PMID: 36536889 PMCID: PMC9756960 DOI: 10.1021/acspolymersau.2c00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/17/2023]
Abstract
Force-driven chemical reactions have emerged as an attractive platform for diverse applications in polymeric materials. However, the microscopic chain conformations and topologies necessary for efficiently transducing macroscopic forces to the molecular scale are not well-understood. In this work, we use a coarse-grained model to investigate the impact of network-like topologies on mechanochemical activation in self-assembled triblock copolymers. We find that mechanochemical activation during tensile deformation depends strongly on both the polymer composition and chain conformation in these materials. Activation primarily occurs in the tie chains connecting different glassy domains and in loop chains that are hooked onto each other by physical entanglements. Activation also requires a higher stress in materials having a higher glassy block content. Overall, the lamellar samples show the highest percent activation at high stress. In contrast, at low stress, the spherical morphology, which has the lowest glassy fraction, shows the highest activation. Additionally, we observe a spatial pattern of activation, which appears to be tied to distortion of the self-assembled morphology. Higher activation is observed in the tips of the chevrons formed during deformation of lamellar samples as well as in the centers between the cylinders in the cylindrical morphology. Our work shows that changes in the network-like topology in different morphologies significantly impact mechanochemical activation efficiencies in these materials, suggesting that this area will be a fruitful avenue for further experimental research.
Collapse
Affiliation(s)
- Zijian Huo
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Stephen J Skala
- Materials
Science and Engineering, Grainger College of Engineering, University of Illinois, Urbana−Champaign, Illinois 61801, United States
| | - Lavinia R Falck
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer E Laaser
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Antonia Statt
- Materials
Science and Engineering, Grainger College of Engineering, University of Illinois, Urbana−Champaign, Illinois 61801, United States
| |
Collapse
|
3
|
Glagolev MK, Glagoleva AA, Vasilevskaya VV. Microphase separation in helix-coil block copolymer melts: computer simulation. SOFT MATTER 2021; 17:8331-8342. [PMID: 34550153 DOI: 10.1039/d1sm00759a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
By means of molecular dynamics simulation, the process of the microphase separation in the melts of diblock helix-coil copolymers comprising a flexible and a helical block was studied. The resulting microstructures were examined, and the spatial distribution of the blocks and molecular packing were investigated. The phase diagram was built in terms of the fraction of the helical block and the incompatibility parameter of the blocks. The comparison of the diagrams for helix-coil and the classic coil-coil copolymer blends was carried out. It was shown that the total region where the ordering into distinctive microstructures takes place is similar for both diagrams. But for the helix-coil copolymers the area of the cylinders splits into the region of those with circular and elliptical cross-sections; the bicontinuous phase area is much wider; in the lamellar phases, the helical blocks were oriented precisely perpendicular to the lamellar interface, forming a cohesive interlocked structure of densely packed helices.
Collapse
Affiliation(s)
- M K Glagolev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova ul. 28, Moscow 119991, Russia.
| | - A A Glagoleva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova ul. 28, Moscow 119991, Russia.
| | - V V Vasilevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova ul. 28, Moscow 119991, Russia.
| |
Collapse
|
4
|
Zhang Z, Krajniak J, Ganesan V. A Multiscale Simulation Study of Influence of Morphology on Ion Transport in Block Copolymeric Ionic Liquids. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zidan Zhang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jakub Krajniak
- Independent researcher, os. Kosmonautow 13/56, 61-631 Poznan, Poland
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Nam C, Lee WB, Kim Y. Self-assembly of rod-coil diblock copolymer-nanoparticle composites in thin films: dissipative particle dynamics. SOFT MATTER 2021; 17:2384-2391. [PMID: 33480958 DOI: 10.1039/d0sm02149k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the assembled structures of rod-coil diblock copolymer and nanoparticle blends were studied via dissipative particle dynamics (DPD). Thin films were composed of soft confinement DPD fluid beads and the fluctuating film structure was maintained during the simulation process. Analysis of the position of nanoparticles was done in the smectic lamellar phase of the rod-coil polymer matrix, and density distributions of rods, coils, and nanoparticles were obtained as functions of the size of the nanoparticle and the DPD repulsion constant between the rod and the nanoparticle. The distribution of nanoparticles was explained by using the concept of translational entropy of nanoparticles, stretching energy of the polymer chain, relative repulsion enthalpy of nanoparticles to rods or coils, and the effect of the liquid crystalline rod.
Collapse
Affiliation(s)
- Chongyong Nam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - YongJoo Kim
- School of Advanced Materials Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea.
| |
Collapse
|
6
|
Li W, Carrillo JMY, Sumpter BG, Kumar R. Modulating Microphase Separation of Lamellae-Forming Diblock Copolymers via Ionic Junctions. ACS Macro Lett 2020; 9:1667-1673. [PMID: 35617068 DOI: 10.1021/acsmacrolett.0c00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present a molecular dynamics simulation study investigating the phase behavior of lamellae-forming diblock copolymers with a single ionic junction on the backbone. Our results show qualitative agreement with experimental findings regarding enhanced microphase separation with the introduction of an ionic junction at the conjunction point, while further revealing nonmonotonic changes in domain spacing and order-disorder transition as a function of the electrostatic interaction strength. This highlights the dominant roles of entropic and binding effects of counterions under weak and strong ionic correlations, respectively. The location of the ionic junction is found to effectively modulate the charge distribution and chain conformation in the ordered domains; its presence in the middle of a block promotes folding of the block, leading to a smaller domain size. These findings demonstrate the interplay of ionic coupling with steric hindrance and chain end effects, which enhances our understanding of the delicate control over the microphase domain features.
Collapse
Affiliation(s)
- Wei Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
7
|
Ma M, Fu Y. A Molecular Dynamics Study of the Mechanical Properties of Ionic Copolymers during Tension–Recovery Deformation. MACROMOL THEOR SIMUL 2020. [DOI: 10.1002/mats.202000081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengze Ma
- Department of Aerospace Engineering and Engineering Mechanics University of Cincinnati Cincinnati OH 45221 USA
| | - Yao Fu
- Department of Aerospace Engineering and Engineering Mechanics University of Cincinnati Cincinnati OH 45221 USA
| |
Collapse
|
8
|
Structural and Mechanical Properties of Ionic Di-block Copolymers via a Molecular Dynamics Approach. Polymers (Basel) 2019; 11:polym11101546. [PMID: 31547576 PMCID: PMC6835995 DOI: 10.3390/polym11101546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022] Open
Abstract
Polymerized ionic copolymers have recently evolved as a new class of materials to overcome the limited range of mechanical properties of ionic homopolymers. In this paper, we investigate the structural and mechanical properties of charged ionic homopolymers and di-block copolymers, while using coarse-grained molecular dynamics simulation. Tensile and compressive deformation are applied to the homopolymers and copolymers in the glassy state. The effect of charge ratio and loading direction on the stress-strain behavior are studied. It is found that the electrostatic interactions among charged pairs play major roles, as evidenced by increased Young’s modulus and yield strength with charge ratio. Increased charge ratio lead to enhanced stress contribution from both bonding and pairwise (Van der Waals + coulombic) interaction. The increase in the gyration of the radius is observed with increasing charge ratio in homopolymers, yet a reversed tendency is observed in copolymers. Introduced charge pairs leads to an increased randomness in the segmental orientation in copolymers.
Collapse
|
9
|
Alshammasi MS, Escobedo FA. Correlation between morphology and anisotropic transport properties of diblock copolymers melts. SOFT MATTER 2019; 15:851-859. [PMID: 30548034 DOI: 10.1039/c8sm02095g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular simulations of coarse-grained diblock copolymers (DBP) were conducted to study the effect of segregation strength and morphology on transport properties. It was found that in the strong segregation limit (i.e., high χN, where χ is the Flory-Huggins parameter and N is the degree of polymerization), the presence of the DBP interfaces imposes topological constraints similar to those of entanglements as manifested in the rheological signature of the polymer (i.e., a plateau modulus). Furthermore, compared to the behavior of isotropic melts, the crossover from Rouse to reptation scaling of the self-diffusion coefficient (D) parallel to the DBP interface takes place at a smaller N, an effect that depends on temperature and is more pronounced in the Lamellae morphology than in the hexagonal cylinder morphology. Additionally, it is shown that for an entangled melt (i.e., N ≫ Ne where Ne is the entanglement length) block retraction is instrumental for chains to diffuse parallel to the interface of lamellar layers. Lastly, it is found that the anisotropic viscosity of different morphologies is mostly affected by the orientation of the chains relative to the shear flow direction, exhibiting reduced values when chains align in the neutral or flow directions.
Collapse
Affiliation(s)
- Mohammed Suliman Alshammasi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
10
|
Sala D, Musiani F, Rosato A. Application of Molecular Dynamics to the Investigation of Metalloproteins Involved in Metal Homeostasis. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Davide Sala
- Magnetic Resonance Center (CERM); University of Florence; Via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry; Department of Pharmacy and Biotechnology; University of Bologna; Viale Giuseppe Fanin 40, I 40127 Bologna Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM); University of Florence; Via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine; Via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
11
|
Ryu JH, Kim Y, Lee WB. Inhomogeneity of block copolymers at the interface of an immiscible polymer blend. Phys Rev E 2018; 97:042502. [PMID: 29758764 DOI: 10.1103/physreve.97.042502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 11/07/2022]
Abstract
We present the effects of structure and stiffness of block copolymers on the interfacial properties of an immiscible homopolymer blend. Diblock and two-arm grafted copolymers with variation in stiffness are modeled using coarse-grained molecular dynamics to compare the compatibilization efficiency, i.e., reduction of interfacial tension. Overall, grafted copolymers are located more compactly at the interface and show better compatibilization efficiency than diblock copolymers. In addition, an increase in the stiffness for one of the blocks of the diblock copolymers causes unusual inhomogeneous interfacial coverage due to bundle formation. However, an increase in the stiffness for one of blocks of the grafted copolymers prevents the bundle formation due to the branched chain. As a result, homogeneous interfacial coverage of homopolymer blends is realized with significant reduction of interfacial tension which makes grafted copolymer a better candidate for the compatibilizer of immiscible homopolymer blend.
Collapse
Affiliation(s)
- Ji Ho Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - YongJoo Kim
- KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Beardsley TM, Matsen MW. Universality between Experiment and Simulation of a Diblock Copolymer Melt. PHYSICAL REVIEW LETTERS 2016; 117:217801. [PMID: 27911549 DOI: 10.1103/physrevlett.117.217801] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Indexed: 06/06/2023]
Abstract
The equivalent behavior among analogous block copolymer systems involving chemically distinct molecules or mathematically different models has long hinted at an underlying universality, but only recently has it been rigorously demonstrated by matching results from different simulations. The profound implication of universality is that simple coarse-grained models can be calibrated so as to provide quantitatively accurate predictions to experiment. Here, we provide the first compelling demonstration of this by simulating a polyisoprene-polylactide diblock copolymer melt using a previously calibrated lattice model. The simulation successfully predicts the peak in the disordered-state structure function, the position of the order-disorder transition, and the latent heat of the transition in excellent quantitative agreement with experiment. This could mark a new era of precision in the field of block copolymer research.
Collapse
Affiliation(s)
- Thomas M Beardsley
- Department of Chemical Engineering, Department of Physics & Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Mark W Matsen
- Department of Chemical Engineering, Department of Physics & Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|