1
|
Aliabadi R, Nasirimoghadam S, Wensink HH. Evidence of T-type structures of hard square boards in capillary confinement. Phys Rev E 2023; 107:054117. [PMID: 37329060 DOI: 10.1103/physreve.107.054117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/05/2023] [Indexed: 06/18/2023]
Abstract
We employ Onsager's second virial density functional theory combined with the Parsons-Lee theory within the restricted orientation (Zwanzig) approximation to examine the phase structure of hard square boards of dimensions (L×D×D) uniaxially confined in narrow slabs. Depending on the wall-to-wall separation (H), we predict a number of distinctly different capillary nematic phases, including a monolayer uniaxial or biaxial planar nematic, homeotropic with a variable number of layers, and a T-type structure. We determine that the favored phase is homotropic, and we observe first-order transitions from the homeotropic structure with n layers to n+1 layers as well as from homeotropic surface anchoring to a monolayer planar or T-type structure involving both planar and homeotropic anchoring at the pore surface. By increasing the packing fraction, we further demonstrate a reentrant homeotropic-planar-homeotropic phase sequence in a particular range (i.e., H/D=1.1 and 0.25≤L/D<0.26). We find that the T-type structure is more stable when the pore is wide enough with respect to the planar phase. The enhanced stability of the mixed-anchoring T-structure is unique for square boards and becomes manifest at pore width exceeding L+D. More specifically, the biaxial T-type structure emerges directly from the homeotropic state without intervention of a planar layer structure as observed for other convex particle shapes.
Collapse
Affiliation(s)
| | | | - Henricus Herman Wensink
- Laboratoire de Physique des Solides - UMR 8502, CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
2
|
Lázaro MT, Aliabadi R, Wensink HH. Second-virial theory for shape-persistent living polymers templated by disks. Phys Rev E 2021; 104:054505. [PMID: 34942807 DOI: 10.1103/physreve.104.054505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/03/2021] [Indexed: 11/07/2022]
Abstract
Living polymers composed of noncovalently bonded building blocks with weak backbone flexibility may self-assemble into thermoresponsive lyotropic liquid crystals. We demonstrate that the reversible polymer assembly and phase behavior can be controlled by the addition of (nonadsorbing) rigid colloidal disks which act as an entropic reorienting "template" onto the supramolecular polymers. Using a particle-based second-virial theory that correlates the various entropies associated with the polymers and disks, we demonstrate that small fractions of discotic additives promote the formation of a polymer nematic phase. At larger disk concentrations, however, the phase is disrupted by collective disk alignment in favor of a discotic nematic fluid in which the polymers are dispersed antinematically. We show that the antinematic arrangement of the polymers generates a nonexponential molecular-weight distribution and stimulates the formation of oligomeric species. At sufficient concentrations the disks facilitate a liquid-liquid phase separation which can be brought into simultaneously coexistence with the two fractionated nematic phases, providing evidence for a four-fluid coexistence in reversible shape-dissimilar hard-core mixtures without cohesive interparticle forces. We stipulate the conditions under which such a phenomenon could be found in experiment.
Collapse
Affiliation(s)
- M Torres Lázaro
- Laboratoire de Physique des Solides, UMR 8502, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - R Aliabadi
- Physics Department, Sirjan University of Technology, Sirjan 78137, Iran
| | - H H Wensink
- Laboratoire de Physique des Solides, UMR 8502, CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
3
|
Kabata D, Ryoki A, Kitamura S, Terao K. Chain Alignment of a Rigid Ring Polymer in the Lyotropic Liquid Crystal Phase: Cyclic Amylose Tris( n-butylcarbamate) in Tetrahydrofuran and Ethyl Lactate. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daigo Kabata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akiyuki Ryoki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Shinichi Kitamura
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai 599-8570, Japan
| | - Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Mizani S, Aliabadi R, Salehi H, Varga S. Orientational ordering and layering of hard plates in narrow slitlike pores. Phys Rev E 2019; 100:032704. [PMID: 31639981 DOI: 10.1103/physreve.100.032704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 11/07/2022]
Abstract
We examine the ordering behavior of hard platelike particles in a very narrow, slitlike pore using the Parsons-Lee density functional theory and the restricted orientation approximation. We observe that the plates are orientationally ordered and align perpendicularly (face-on) to the walls at low densities, a first-order layering transition occurs between uniaxial nematic structures having n and n+1 layers at intermediate densities, and even a phase transition between a monolayer with parallel (edge-on) orientational order and n layers with a perpendicular one can be detected at high densities. In addition to this, the edge-on monolayer is usually biaxial nematic, and a uniaxial-biaxial nematic phase transition can be also seen at very high densities.
Collapse
Affiliation(s)
- Sakine Mizani
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roohollah Aliabadi
- Department of Physics, Faculty of Science, Fasa University, 74617-81189 Fasa, Iran
| | - Hamdollah Salehi
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| |
Collapse
|
5
|
Kim D, Ryoki A, Kabata D, Kitamura S, Terao K. Lyotropic Liquid Crystallinity of Linear and Cyclic Amylose Derivatives: Amylose Tris( n-octadecylcarbamate) in Tetrahydrofuran and 2-Octanone. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- DongChan Kim
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akiyuki Ryoki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Daigo Kabata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shinichi Kitamura
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai 599-8570, Japan
| | - Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Avendaño C, Jackson G, Wensink HH. Nanorings in planar confinement: the role of repulsive surfaces on the formation of lacuna smectics. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1484950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Carlos Avendaño
- School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - George Jackson
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Henricus H. Wensink
- Laboratoire de Physique des Solides UMR 8502, CNRS, Universite Paris-Sud, Universite Paris-Saclay, Orsay, France
| |
Collapse
|
7
|
Packing, entropic patchiness, and self-assembly of non-convex colloidal particles: A simulation perspective. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|