1
|
Izvekov S, Kroonblawd MP, Larentzos JP, Brennan JK, Rice BM. Maximum Entropy Theory of Multiscale Coarse-Graining via Matching Thermodynamic Forces: Application to a Molecular Crystal (TATB). J Phys Chem B 2024. [PMID: 38489758 DOI: 10.1021/acs.jpcb.3c07078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The MSCG/FM (multiscale coarse-graining via force-matching) approach is an efficient supervised machine learning method to develop microscopically informed coarse-grained (CG) models. We present a theory based on the principle of maximum entropy (PME) enveloping the existing MSCG/FM approaches. This theory views the MSCG/FM method as a special case of matching the thermodynamic forces from the extended ensemble described by the set of thermodynamic (relevant) system coordinates. This set may include CG coordinates, the stress tensor, applied external fields, and so forth, and may be characterized by nonequilibrium conditions. Following the presentation of the theory, we discuss the consistent matching of both bonded and nonbonded interactions. The proposed PME formulation is used as a starting point to extend the MSCG/FM method to the constant strain ensemble, which together with the explicit matching of the bonded forces is better suited for coarse-graining anisotropic media at a submolecular resolution. The theory is demonstrated by performing the fine coarse-graining of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a well-known insensitive molecular energetic material, which exhibits highly anisotropic mechanical properties.
Collapse
Affiliation(s)
- Sergei Izvekov
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - James P Larentzos
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - John K Brennan
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Betsy M Rice
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| |
Collapse
|
2
|
Jin J, Lee EK, Voth GA. Understanding dynamics in coarse-grained models. III. Roles of rotational motion and translation-rotation coupling in coarse-grained dynamics. J Chem Phys 2023; 159:164102. [PMID: 37870140 DOI: 10.1063/5.0167158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
This paper series aims to establish a complete correspondence between fine-grained (FG) and coarse-grained (CG) dynamics by way of excess entropy scaling (introduced in Paper I). While Paper II successfully captured translational motions in CG systems using a hard sphere mapping, the absence of rotational motions in single-site CG models introduces differences between FG and CG dynamics. In this third paper, our objective is to faithfully recover atomistic diffusion coefficients from CG dynamics by incorporating rotational dynamics. By extracting FG rotational diffusion, we unravel, for the first time reported to our knowledge, a universality in excess entropy scaling between the rotational and translational diffusion. Once the missing rotational dynamics are integrated into the CG translational dynamics, an effective translation-rotation coupling becomes essential. We propose two different approaches for estimating this coupling parameter: the rough hard sphere theory with acentric factor (temperature-independent) or the rough Lennard-Jones model with CG attractions (temperature-dependent). Altogether, we demonstrate that FG diffusion coefficients can be recovered from CG diffusion coefficients by (1) incorporating "entropy-free" rotational diffusion with translation-rotation coupling and (2) recapturing the missing entropy. Our findings shed light on the fundamental relationship between FG and CG dynamics in molecular fluids.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Eok Kyun Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
3
|
Izvekov S, Rice BM. Hierarchical Machine Learning of Low-Resolution Coarse-Grained Free Energy Potentials. J Chem Theory Comput 2023. [PMID: 37256918 DOI: 10.1021/acs.jctc.3c00128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A force-matching-based method for supervised machine learning (ML) of coarse-grained (CG) free energy (FE) potentials─known as multiscale coarse-graining via force-matching (MSCG/FM)─is an efficient method to develop microscopically informed CG models that are thermodynamically and statistically equivalent to the reference microscopic models. For low-resolution models, when the coarse-graining is at supramolecular scales, objective-oriented clustering of nonbonded particles is required and the reduced description becomes a function of the clustering algorithm. In the present work, we explore the dependence of the ML of the CG Helmholtz FE potential on the clustering algorithm. We consider coarse-graining based on partitional (k-means, leading to Voronoi diagram) and hierarchical agglomerative (bottom-up) clustering algorithms common in unsupervised ML and develop theory connecting the MSCG/FM learned CG Helmholtz potential and the clustering statistics. By combining the agglomerative clustering and the MSCG/FM learning in a recursive manner, we propose an efficient ML methodology to develop the fine-to-low resolution hierarchies of the CG models. The methodology does not suffer from degrading accuracy or increased computational cost to construct larger hierarchies and as such does not impose an upper size limitation of the CG particles resulting from the extended hierarchies. The utility of the methodology is demonstrated by obtaining the bottom-up agglomerative hierarchy for liquid nitromethane from all-atom molecular dynamics (MD) simulations. For agglomerative hierarchies, we prove the existence of renormalization group transformations that indicate self-similarity and allow for learning the low-resolution MSCG/FM potentials at low computational cost by rescaling and renormalizing the certain finer-resolution members of the hierarchy. The hierarchies of the CG models can be used to carry out simulations under constant-pressure conditions.
Collapse
Affiliation(s)
- Sergei Izvekov
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Betsy M Rice
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| |
Collapse
|
4
|
Klippenstein V, van der Vegt NFA. Bottom-Up Informed and Iteratively Optimized Coarse-Grained Non-Markovian Water Models with Accurate Dynamics. J Chem Theory Comput 2023; 19:1099-1110. [PMID: 36745567 PMCID: PMC9979609 DOI: 10.1021/acs.jctc.2c00871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molecular dynamics (MD) simulations based on coarse-grained (CG) particle models of molecular liquids generally predict accelerated dynamics and misrepresent the time scales for molecular vibrations and diffusive motions. The parametrization of Generalized Langevin Equation (GLE) thermostats based on the microscopic dynamics of the fine-grained model provides a promising route to address this issue, in conjunction with the conservative interactions of the CG model obtained with standard coarse graining methods, such as iterative Boltzmann inversion, force matching, or relative entropy minimization. We report the application of a recently introduced bottom-up dynamic coarse graining method, based on the Mori-Zwanzig formalism, which provides accurate estimates of isotropic GLE memory kernels for several CG models of liquid water. We demonstrate that, with an additional iterative optimization of the memory kernels (IOMK) for the CG water models based on a practical iterative optimization technique, the velocity autocorrelation function of liquid water can be represented very accurately within a few iterations. By considering the distinct Van Hove function, we demonstrate that, with the presented methods, an accurate representation of structural relaxation can be achieved. We consider several distinct CG potentials to study how the choice of the CG potential affects the performance of bottom-up informed and iteratively optimized models.
Collapse
|
5
|
Jin J, Schweizer KS, Voth GA. Understanding dynamics in coarse-grained models. II. Coarse-grained diffusion modeled using hard sphere theory. J Chem Phys 2023; 158:034104. [PMID: 36681632 DOI: 10.1063/5.0116300] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The first paper of this series [J. Chem. Phys. 158, 034103 (2023)] demonstrated that excess entropy scaling holds for both fine-grained and corresponding coarse-grained (CG) systems. Despite its universality, a more exact determination of the scaling relationship was not possible due to the semi-empirical nature. In this second paper, an analytical excess entropy scaling relation is derived for bottom-up CG systems. At the single-site CG resolution, effective hard sphere systems are constructed that yield near-identical dynamical properties as the target CG systems by taking advantage of how hard sphere dynamics and excess entropy can be analytically expressed in terms of the liquid packing fraction. Inspired by classical equilibrium perturbation theories and recent advances in constructing hard sphere models for predicting activated dynamics of supercooled liquids, we propose a new approach for understanding the diffusion of molecular liquids in the normal regime using hard sphere reference fluids. The proposed "fluctuation matching" is designed to have the same amplitude of long wavelength density fluctuations (dimensionless compressibility) as the CG system. Utilizing the Enskog theory to derive an expression for hard sphere diffusion coefficients, a bridge between the CG dynamics and excess entropy is then established. The CG diffusion coefficient can be roughly estimated using various equations of the state, and an accurate prediction of accelerated CG dynamics at different temperatures is also possible in advance of running any CG simulation. By introducing another layer of coarsening, these findings provide a more rigorous method to assess excess entropy scaling and understand the accelerated CG dynamics of molecular fluids.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kenneth S Schweizer
- Department of Material Science, Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
6
|
Jin J, Schweizer KS, Voth GA. Understanding dynamics in coarse-grained models. I. Universal excess entropy scaling relationship. J Chem Phys 2023; 158:034103. [PMID: 36681649 DOI: 10.1063/5.0116299] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coarse-grained (CG) models facilitate an efficient exploration of complex systems by reducing the unnecessary degrees of freedom of the fine-grained (FG) system while recapitulating major structural correlations. Unlike structural properties, assessing dynamic properties in CG modeling is often unfeasible due to the accelerated dynamics of the CG models, which allows for more efficient structural sampling. Therefore, the ultimate goal of the present series of articles is to establish a better correspondence between the FG and CG dynamics. To assess and compare dynamical properties in the FG and the corresponding CG models, we utilize the excess entropy scaling relationship. For Paper I of this series, we provide evidence that the FG and the corresponding CG counterpart follow the same universal scaling relationship. By carefully reviewing and examining the literature, we develop a new theory to calculate excess entropies for the FG and CG systems while accounting for entropy representability. We demonstrate that the excess entropy scaling idea can be readily applied to liquid water and methanol systems at both the FG and CG resolutions. For both liquids, we reveal that the scaling exponents remain unchanged from the coarse-graining process, indicating that the scaling behavior is universal for the same underlying molecular systems. Combining this finding with the concept of mapping entropy in CG models, we show that the missing entropy plays an important role in accelerating the CG dynamics.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kenneth S Schweizer
- Department of Material Science, Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
7
|
Izvekov S. Mori-Zwanzig projection operator formalism: Particle-based coarse-grained dynamics of open classical systems far from equilibrium. Phys Rev E 2021; 104:024121. [PMID: 34525637 DOI: 10.1103/physreve.104.024121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/20/2021] [Indexed: 11/07/2022]
Abstract
We present a generalized Langevin equation (GLE) of motion that governs exactly the time evolution of phase-space observables in finite open systems described by classical Hamiltonians with explicitly time-dependent potentials. This formalism is based on the Mori-Zwanzig projection operator (PO) method with a time-independent Zwanzig PO within a Heisenberg (Lagrangian) picture and reduced description of Hamiltonian systems in terms of canonical relevant and irrelevant coordinates. We demonstrate that, similarly to closed systems, GLE dynamics in Hamiltonian systems in the presence of time-dependent potentials is determined by conservative, dissipative memory, and projected force fields, and that the memory functions relate to the projected force, which is a two-time process, in a way that is reminiscent of the equilibrium second fluctuation-dissipation relation. We further show that, in the most general case, the memory kernel depends on the relevant momentum gradients of the (Boltzmann) entropy of the irrelevant subsystem. Using two Zwanzig operators which are, respectively, functionals of the canonical and generalized canonical probability densities, we then derive what we call canonical and generalized canonical GLEs. Further, we can formulate the particle-based, coarse-grained (CG) GLE dynamics by transitioning to Jacobi coordinates which corresponds to a particle set partitioning of the Hamiltonian system. The obtained canonical CG GLE of motion for the relevant momenta is a generalization of the CG equation of motion known for closed systems. Also, using a Markovian approximation of the canonical CG GLE, we can extend the dissipative particle dynamics equation to open systems. A distinctive feature of our extension is a use of explicitly time-dependent frictions, which reflect the changes in the dissipation rate caused by time-dependent coupling to an external bath. Our GLE formalism and workflow constitute a general and viable framework that can be readily used as a starting point to rigorously formulate microscopically informed CG treatments for a variety of phenomena in externally forced systems far from equilibrium.
Collapse
Affiliation(s)
- Sergei Izvekov
- Weapons and Materials Research Directorate, U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
| |
Collapse
|
8
|
Izvekov S, Rice BM. Bottom-up coarse-grain modeling of plasticity and nanoscale shear bands in α-RDX. J Chem Phys 2021; 155:064503. [PMID: 34391357 DOI: 10.1063/5.0057223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Computationally inexpensive particle-based coarse-grained (CG) models are essential for use in molecular dynamics (MD) simulations of mesoscopically slow cooperative phenomena, such as plastic deformations in solids. Molecular crystals possessing complex symmetry present enormous practical challenges for particle-based coarse-graining at molecularly resolved scales, when each molecule is in a single-site representation, and beyond. Presently, there is no published pairwise non-bonded single-site CG potential that is able to predict the space group and structure of a molecular crystal. In this paper, we present a successful coarse-graining at a molecular level from first principles of an energetic crystal, hexahydro-1,3,5-trinitro-s-triazine (RDX) in the alpha phase, using the force-matching-based multiscale coarse-graining (MSCG/FM) approach. The new MSCG/FM model, which implements an optimal pair decomposition of the crystal Helmholtz free energy potential in molecular center-of-mass coordinates, was obtained by force-matching atomistic MD simulations of liquid, amorphous, and crystalline states and in a wide range of pressures (up to 20 GPa). The MSCG/FM potentials for different pressures underwent top-down optimization to fine-tune the mechanical and thermodynamic properties, followed by consolidation into a transferable density-dependent model referred to as RDX-TC-DD (RDX True-Crystal Density-Dependent). The RDX-TC-DD model predicts accurately the crystal structure of α-RDX at room conditions and reproduces the atomistic reference system under isothermal (300 K) hydrostatic compression up to 20 GPa, in particular, the Pbca symmetry of α-RDX in the elastic regime. The RDX-TC-DD model was then used to simulate the plastic response of uniaxially ([100]) compressed α-RDX resulting in nanoscale shear banding, a key mechanism for plastic deformation and defect-free detonation initiation proposed for many molecular crystalline explosives. Additionally, a comparative analysis of the effect of core-softening of the RDX-TC-DD potential and the degree of molecular rigidity in the all-atom treatment suggests a stress-induced short-range softening of the effective intermolecular interaction as a fundamental cause of plastic instability in α-RDX. The reported RDX-TC-DD model and overall workflow to develop it open up possibilities to perform high quality simulation studies of molecular energetic materials under thermal and mechanical stimuli, including extreme conditions.
Collapse
Affiliation(s)
- Sergei Izvekov
- Weapons and Materials Research Directorate, U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
| | - Betsy M Rice
- Weapons and Materials Research Directorate, U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
| |
Collapse
|
9
|
Izvekov S. Microscopic derivation of coarse-grained, energy-conserving generalized Langevin dynamics. J Chem Phys 2019; 151:104109. [PMID: 31521077 DOI: 10.1063/1.5096655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Properly simulating nonequilibrium phenomena such as thermal transport and shock wave propagation in complex condensed matter systems require the conservation of system's internal energy. This precludes the application of the coarse-grained (CG) generalized Langevin equation (GLE) dynamics due to the presence of dissipative interactions. Attempts to address this issue have been pursued both phenomenologically and from entropy-based first principles for dissipative particle dynamics (DPD, a Markovian variant of the CG GLE dynamics) by introducing an energy conserving extension of DPD (DPD-E). We present here a rigorous microscopic derivation of two energy conserving variants of the CG GLE dynamics by extending the CG equations of motion to include the GLE for certain internal energy observables of the microscopic system. We consider two choices of such observables: the total internal energy and a set of internal energies of the CG particles. The derivation is performed using the Mori-Zwanzig projection operator method in the Heisenberg picture for time evolution of thermodynamic expectations and the recently introduced interpretation of the Zwanzig projection operator [S. Izvekov, J. Chem. Phys. 146(12), 124109 (2017)] which allows an exact calculation of the memory and projected terms. We begin with equilibrium conditions and show that the GLE dynamics for the internal energy observables is purely dissipative. Our extension of the GLE dynamics to quasiequilibrium conditions (necessary to observe heat transport) is based on the generalized canonical ensemble approach and transport equation using the nonequilibrium statistical operator (NSO) method. We derive closed microscopic expressions for conductive heat transfer coefficients in the limit of neglecting dissipation in heat transfer and in the lowest order of deviation from equilibrium. After employing the Markov approximation, we compare the equations of motion to the published DPD-E equations. Our equations contain additional energy transfer terms not reported in the previous works. Additionally, we show that, despite neglecting dissipative processes in heat transport, the heat transfer coefficients and random force are related in a way reminiscent of the fluctuation-dissipation relation. The formalism presented here is sufficiently general for the rigorous formulation of the GLE dynamics for arbitrary microscopic phase space observables as well as sampling different microscopic ensembles in CG simulations.
Collapse
Affiliation(s)
- Sergei Izvekov
- Weapons and Materials Research Directorate, U.S. Army CCDC Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
| |
Collapse
|
10
|
Recent Progress towards Chemically-Specific Coarse-Grained Simulation Models with Consistent Dynamical Properties. COMPUTATION 2019. [DOI: 10.3390/computation7030042] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Coarse-grained (CG) models can provide computationally efficient and conceptually simple characterizations of soft matter systems. While generic models probe the underlying physics governing an entire family of free-energy landscapes, bottom-up CG models are systematically constructed from a higher-resolution model to retain a high level of chemical specificity. The removal of degrees of freedom from the system modifies the relationship between the relative time scales of distinct dynamical processes through both a loss of friction and a “smoothing” of the free-energy landscape. While these effects typically result in faster dynamics, decreasing the computational expense of the model, they also obscure the connection to the true dynamics of the system. The lack of consistent dynamics is a serious limitation for CG models, which not only prevents quantitatively accurate predictions of dynamical observables but can also lead to qualitatively incorrect descriptions of the characteristic dynamical processes. With many methods available for optimizing the structural and thermodynamic properties of chemically-specific CG models, recent years have seen a stark increase in investigations addressing the accurate description of dynamical properties generated from CG simulations. In this review, we present an overview of these efforts, ranging from bottom-up parameterizations of generalized Langevin equations to refinements of the CG force field based on a Markov state modeling framework. We aim to make connections between seemingly disparate approaches, while laying out some of the major challenges as well as potential directions for future efforts.
Collapse
|
11
|
Kempfer K, Devémy J, Dequidt A, Couty M, Malfreyt P. Development of Coarse-Grained Models for Polymers by Trajectory Matching. ACS OMEGA 2019; 4:5955-5967. [PMID: 31459746 PMCID: PMC6648800 DOI: 10.1021/acsomega.9b00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/18/2019] [Indexed: 05/21/2023]
Abstract
Coarse-grained (CG) models allow for simulating the necessary time and length scales relevant to polymers. However, developing realistic force fields at the CG level is still a challenge because there is no guarantee that the CG model reproduces all the properties of the atomistic model. A recent promising method was proposed for small molecules using statistical trajectory matching. Here, we extend this method to the case of polymeric systems. As the quality of the final model crucially depends on the model design, we study and discuss the effect of the modeling choices on the structure and dynamics of bulk polymers before a quantitative comparison is made between CG methods on different properties and polymers.
Collapse
Affiliation(s)
- Kévin Kempfer
- Université
Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- Manufacture
Française des Pneumatiques Michelin, 23, Place des Carmes, 63040 Clermont-Ferrand, France
| | - Julien Devémy
- Université
Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Alain Dequidt
- Université
Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- E-mail: (A.D.)
| | - Marc Couty
- Manufacture
Française des Pneumatiques Michelin, 23, Place des Carmes, 63040 Clermont-Ferrand, France
| | - Patrice Malfreyt
- Université
Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- E-mail: (P.M.)
| |
Collapse
|
12
|
Lynn H, Thachuk M. Equations of motion for position-dependent coarse-grain mappings obtained with Mori-Zwanzig theory. J Chem Phys 2019; 150:024108. [DOI: 10.1063/1.5058061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hudson Lynn
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mark Thachuk
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
13
|
Deichmann G, van der Vegt NFA. Bottom-up approach to represent dynamic properties in coarse-grained molecular simulations. J Chem Phys 2019; 149:244114. [PMID: 30599732 DOI: 10.1063/1.5064369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several molecular coarse-graining methods have been proposed in recent years to derive chemical- and state-point transferable force fields. While these force fields describe structural and thermodynamic properties in good agreement with fine-grained models and experiments, dynamic properties are usually overestimated. Herein, we examine if the long-time dynamic properties of molecular coarse-grained (CG) systems can be correctly represented by employing a dissipative particle dynamics (DPD) thermostat, which is "bottom-up informed" by means of a variant of the Markovian Mori-Zwanzig (MZ) DPD coarse-graining method. We report single-site and multiple-site CG models for a monomer, dimer, and 24mer based on 2,2-dimethyl propane as a chemical repeat unit and report data obtained from MZ-DPD simulations of liquids, polymer solutions, and polymer melts. We find that despite incomplete time scale separation of the molecular CG model, MZ-DPD achieves quantitative accuracy in predicting diffusive dynamics in single-component liquids and polymer solutions (24mers in a dimer solvent). We also find that MZ-DPD simulations of molecular penetrant diffusion in polymer networks do not reach quantitative agreement with the fine-grained model. Modeling diffusion governed by the activated barrier crossing of small molecular penetrants in these dense systems requires an accurate description of energy barriers, presumably combined with the treatment of memory effects. The use of a MZ-DPD thermostat extends the scope and applicability of molecular CG models for multicomponent systems where a correct description of the relative diffusion rates of the different components is important.
Collapse
Affiliation(s)
- Gregor Deichmann
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|