1
|
Bresci V, Gremillet L, Lemoine M. Saturation of the asymmetric current filamentation instability under conditions relevant to relativistic shock precursors. Phys Rev E 2022; 105:035202. [PMID: 35428059 DOI: 10.1103/physreve.105.035202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The current filamentation instability, which generically arises in the counterstreaming of plasma flows, is known for its ability to convert the free energy associated with anisotropic momentum distributions into kinetic-scale magnetic fields. The saturation of this instability has been extensively studied in symmetric configurations where the interpenetrating plasmas share the same properties (velocity, density, temperature). In many physical settings, however, the most common configuration is that of asymmetric plasma flows. For instance, the precursor of relativistic collisionless shock waves involves a hot, dilute beam of accelerated particles reflected at the shock front and a cold, dense inflowing background plasma. To determine the appropriate criterion for saturation in this case, we have performed large-scale two-dimensional particle-in-cell simulations of counterstreaming electron-positron pair and electron-ion plasmas. We show that, in interpenetrating pair plasmas, the relevant criterion is that of magnetic trapping as applied to the component (beam or plasma) that carries the larger inertia of the two; namely, the instability growth suddenly slows down once the quiver frequency of those particles equals or exceeds the instability growth rate. We present theoretical approximations for the saturation level. These findings remain valid for electron-ion plasmas provided that electrons and ions are close to equipartition in the plasma flow of larger inertia. Our results can be directly applied to the physics of relativistic, weakly magnetized shock waves, but they can also be generalized to other cases of study.
Collapse
Affiliation(s)
- Virginia Bresci
- Institut d'Astrophysique de Paris, CNRS - Sorbonne Université, 98 bis boulevard Arago, F-75014 Paris, France
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - Laurent Gremillet
- CEA, DAM, DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France
| | - Martin Lemoine
- Institut d'Astrophysique de Paris, CNRS - Sorbonne Université, 98 bis boulevard Arago, F-75014 Paris, France
| |
Collapse
|
2
|
Li R, Huang TW, Ju LB, Yu MY, Zhang H, Wu SZ, Zhuo HB, Zhou CT, Ruan SC. Nanoscale Electrostatic Modulation of Mega-Ampere Electron Current in Solid-Density Plasmas. PHYSICAL REVIEW LETTERS 2021; 127:245002. [PMID: 34951809 DOI: 10.1103/physrevlett.127.245002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/07/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Transport of high-current relativistic electron beams in dense plasmas is of interest in many areas of research. However, so far the mechanism of such beam-plasma interaction is still not well understood due to the appearance of small time- and space-scale effects. Here we identify a new regime of electron beam transport in solid-density plasma, where kinetic effects that develop on small time and space scales play a dominant role. Our three-dimensional particle-in-cell simulations show that in this regime the electron beam can evolve into layered short microelectron bunches when collisions are relatively weak. The phenomenon is attributed to a secondary instability, on the space- and timescales of the electron skin depth (tens of nanometers) and few femtoseconds of strong electrostatic modulation of the microelectron current filaments formed by Weibel-like instability of the original electron beam. Analytical analysis on the amplitude, scale length, and excitation condition of the self-generated electrostatic fields is clearly validated by the simulations.
Collapse
Affiliation(s)
- R Li
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - T W Huang
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - L B Ju
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - M Y Yu
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - H Zhang
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - S Z Wu
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - H B Zhuo
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - C T Zhou
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - S C Ruan
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| |
Collapse
|
3
|
Peterson JR, Glenzer S, Fiuza F. Magnetic Field Amplification by a Nonlinear Electron Streaming Instability. PHYSICAL REVIEW LETTERS 2021; 126:215101. [PMID: 34114855 DOI: 10.1103/physrevlett.126.215101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Magnetic field amplification by relativistic streaming plasma instabilities is central to a wide variety of high-energy astrophysical environments as well as to laboratory scenarios associated with intense lasers and electron beams. We report on a new secondary nonlinear instability that arises for relativistic dilute electron beams after the saturation of the linear Weibel instability. This instability grows due to the transverse magnetic pressure associated with the beam current filaments, which cannot be quickly neutralized due to the inertia of background ions. We show that it can amplify the magnetic field strength and spatial scale by orders of magnitude, leading to large-scale plasma cavities with strong magnetic field and to very efficient conversion of the beam kinetic energy into magnetic energy. The instability growth rate, saturation level, and scale length are derived analytically and shown to be in good agreement with fully kinetic simulations.
Collapse
Affiliation(s)
- J R Peterson
- Physics Department, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Glenzer
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - F Fiuza
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
4
|
Pérez F, Grech M. Oblique-incidence, arbitrary-profile wave injection for electromagnetic simulations. Phys Rev E 2019; 99:033307. [PMID: 30999544 DOI: 10.1103/physreve.99.033307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 11/07/2022]
Abstract
In an electromagnetic code, a wave can be injected in the simulation domain by prescribing an oscillating field profile at the domain boundary. The process is straightforward when the field profile has a known analytical expression (typically, paraxial Gaussian beams). However, if the field profile is known at some other plane, but not at the boundary (typically, nonparaxial beams), some preprocessing is needed to calculate the field profile after propagation back to the boundary. We present a parallel numerical technique for this propagation between an arbitrary tilted plane and a given boundary of the simulation domain, implemented in the Maxwell-Vlasov particle-in-cell code Smilei.
Collapse
Affiliation(s)
- F Pérez
- Laboratoire pour l'Utilisation des Lasers Intenses, CNRS, École Polytechnique, CEA, Université Paris-Saclay, Sorbonne Université, F-91128, Palaiseau Cedex, France
| | - M Grech
- Laboratoire pour l'Utilisation des Lasers Intenses, CNRS, École Polytechnique, CEA, Université Paris-Saclay, Sorbonne Université, F-91128, Palaiseau Cedex, France
| |
Collapse
|
5
|
Romagnani L, Robinson APL, Clarke RJ, Doria D, Lancia L, Nazarov W, Notley MM, Pipahl A, Quinn K, Ramakrishna B, Wilson PA, Fuchs J, Willi O, Borghesi M. Dynamics of the Electromagnetic Fields Induced by Fast Electron Propagation in Near-Solid-Density Media. PHYSICAL REVIEW LETTERS 2019; 122:025001. [PMID: 30720299 DOI: 10.1103/physrevlett.122.025001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/01/2018] [Indexed: 06/09/2023]
Abstract
The propagation of fast electron currents in near solid-density media was investigated via proton probing. Fast currents were generated inside dielectric foams via irradiation with a short (∼0.6 ps) laser pulse focused at relativistic intensities (Iλ^{2}∼4×10^{19} W cm^{-2} μm^{2}). Proton probing provided a spatially and temporally resolved characterization of the evolution of the electromagnetic fields and of the associated net currents directly inside the target. The progressive growth of beam filamentation was temporally resolved and information on the divergence of the fast electron beam was obtained. Hybrid simulations of electron propagation in dense media indicate that resistive effects provide a major contribution to field generation and explain well the topology, magnitude, and temporal growth of the fields observed in the experiment. Estimations of the growth rates for different types of instabilities pinpoints the resistive instability as the most likely dominant mechanism of beam filamentation.
Collapse
Affiliation(s)
- L Romagnani
- LULI-CNRS, Ecole Polytechnique, CEA, Université Paris-Saclay, F-91128 Palaiseau cedex, France
- Centre for Plasma Physics, School of Mathematics and Physics, The Queen's University of Belfast, Belfast BT7 1NN, United Kingdom
| | - A P L Robinson
- Central Laser Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX, United Kingdom
| | - R J Clarke
- Central Laser Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX, United Kingdom
| | - D Doria
- Centre for Plasma Physics, School of Mathematics and Physics, The Queen's University of Belfast, Belfast BT7 1NN, United Kingdom
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Horia Hulubei Institute for Nuclear Physics (IFIN-HH), Reactorului Str., 30, Magurele 077126, Bucharest, Romania
| | - L Lancia
- LULI-CNRS, Ecole Polytechnique, CEA, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - W Nazarov
- School of Chemistry, University of St. Andrews, St Andrews KY16 9ST, United Kingdom
| | - M M Notley
- Central Laser Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX, United Kingdom
| | - A Pipahl
- Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf, 40225, Germany
| | - K Quinn
- Centre for Plasma Physics, School of Mathematics and Physics, The Queen's University of Belfast, Belfast BT7 1NN, United Kingdom
| | - B Ramakrishna
- Department of Physics, Indian Institute of Technology Hyderabad 502285, India
| | - P A Wilson
- School of Engineering, University of South Australia, Adelaide SA 5095, Australia
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide SA 5000, Australia
| | - J Fuchs
- LULI-CNRS, Ecole Polytechnique, CEA, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - O Willi
- Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf, 40225, Germany
| | - M Borghesi
- Centre for Plasma Physics, School of Mathematics and Physics, The Queen's University of Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
6
|
Grassi A, Grech M, Amiranoff F, Macchi A, Riconda C. Radiation-pressure-driven ion Weibel instability and collisionless shocks. Phys Rev E 2017; 96:033204. [PMID: 29347053 DOI: 10.1103/physreve.96.033204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 06/07/2023]
Abstract
The Weibel instability from counterstreaming plasma flows is a basic process highly relevant for collisionless shock formation in astrophysics. In this paper we investigate, via two- and three-dimensional simulations, suitable configurations for laboratory investigations of the ion Weibel instability (IWI) driven by a fast quasineutral plasma flow launched into the target via the radiation pressure of an ultra-high-intensity laser pulse ("hole-boring" process). The use of S-polarized light at oblique incidence is found to be an optimal configuration for driving IWI, as it prevents the development of surface rippling observed at normal incidence that would lead to strong electron heating and would favor competing instabilities. Conditions for the evolution of IWI into a collisionless shock are also investigated.
Collapse
Affiliation(s)
- A Grassi
- LULI, Sorbonne Université, CNRS, Ecole Polytechnique, CEA, Université Paris-Saclay, Paris, France
- Dipartimento di Fisica Enrico Fermi, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
- Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR/INO), u.o.s. Adriano Gozzini, I-56127 Pisa, Italy
| | - M Grech
- LULI, CNRS, Ecole Polytechnique, CEA, Université Paris-Saclay, Sorbonne Université, Palaiseau, France
| | - F Amiranoff
- LULI, Sorbonne Université, CNRS, Ecole Polytechnique, CEA, Université Paris-Saclay, Paris, France
| | - A Macchi
- Dipartimento di Fisica Enrico Fermi, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
- Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR/INO), u.o.s. Adriano Gozzini, I-56127 Pisa, Italy
| | - C Riconda
- LULI, Sorbonne Université, CNRS, Ecole Polytechnique, CEA, Université Paris-Saclay, Paris, France
| |
Collapse
|