1
|
Surovtsev NV, Adichtchev SV. Dynamic response on a nanometer scale of binary phospholipid-cholesterol vesicles: Low-frequency Raman scattering insight. Phys Rev E 2021; 104:054406. [PMID: 34942765 DOI: 10.1103/physreve.104.054406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Low-frequency Raman spectroscopy was used to study the dynamic response on a nanometer scale of aqueous suspensions of two-component lipid vesicles. Binary mixtures of saturated phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) and cholesterol are interesting for possible coexistence of solidlike and liquid-ordered phases, while the phase coexistence was not reported for unsaturated phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) and cholesterol mixtures. The DOPC-DPPC mixtures represent the well-documented case of coexisting domains of solidlike and liquid-disordered phases. These three series of lipid mixtures are studied here. A broad peak with the maximum in the range of 30-50cm^{-1} and a narrow peak near 10cm^{-1} are observed in the Raman susceptibility of the binary mixtures and attributed to the acousticlike vibrational density of states and layer modes, respectively. Parameters of the broad and narrow peaks are sensitive to lateral and conformational hydrocarbon chain ordering. It was also demonstrated that the low-frequency Raman susceptibility of multicomponent lipid bilayers allows one to determine the phase state of lipid bilayers and distinguish the homogeneous distribution of molecular complexes from coexisting domains with sizes above several nanometers. Thus, the low-frequency Raman spectroscopy provides unique information in studying phase coexistence in lipid bilayers.
Collapse
Affiliation(s)
- N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - S V Adichtchev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Continuous gradient temperature Raman spectroscopy of 1-stearoyl- 2-docosahexaenoyl, 1-stearoyl- 2-arachidonoyl, and 1,2-stearoyl phosphocholines. Chem Phys Lipids 2021; 239:105116. [PMID: 34271000 DOI: 10.1016/j.chemphyslip.2021.105116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
Mixed chain phospholipids containing a saturated fatty acid at sn1 and a polyunsaturated fatty acid in sn2 are common in the specialized biological membranes prevalent in neural, retinal and organ tissues. Particularly important are mixed lipids containing palmitic or stearic acid and arachidonic or docosahexaenoic acid. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements and phase transitions. Herein we utilize GTRS for 1-18:0, 2-20:4n-6 PC; 1-18:0 2-22:6n-3 PC; and 1-18:0, 2-18:0 PC from -80 to 50 °C temperatures. 20 Mb three-dimensional data arrays with 0.2 °C increments and first/second derivatives allowed detailed vibrational mode assignment and analysis. Samples were analyzed neat and with molecular hydration. Previously reported phase transitions for hydrated 18:0-20:4PC and 18:0-22:6PC and numerous spectral differences resulting from hydration and the double bond structure were clearly observed. Molecular models showed that the addition of minimal water molecules results in significant structural differences compared to the neat molecules; 18:0-22:6PC is strikingly compact with water when viewed from the hydrophilic end. This precise Raman data cannot be observed in typically utilized fully hydrated vesicle samples, however the improved GTRS will allow for more precise analysis in fully hydrated vesicles because the underlying modes in the unavoidably broadened spectra can be identified.
Collapse
|
3
|
Fraser-Miller SJ, Rooney JS, Lau M, Gordon KC, Schultz M. Can Coupling Multiple Complementary Methods Improve the Spectroscopic Based Diagnosis of Gastrointestinal Illnesses? A Proof of Principle Ex Vivo Study Using Celiac Disease as the Model Illness. Anal Chem 2021; 93:6363-6374. [PMID: 33844904 DOI: 10.1021/acs.analchem.0c04963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spectroscopic methods are a promising approach for providing a point-of-care diagnostic method for gastrointestinal mucosa associated illnesses. Such a tool is desired to aid immediate decision making and to provide a faster pathway to appropriate treatment. In this pilot study, Raman, near-infrared, low frequency Raman, and autofluoresence spectroscopic methods were explored alone and in combination for the diagnosis of celiac disease. Duodenal biopsies (n = 72) from 24 participants were measured ex vivo using the full suite of studied spectroscopic methods. Exploratory principal component analysis (PCA) highlighted the origin of spectral differences between celiac and normal tissue with celiac biopsies tending to have higher protein relative to lipid signals and lower carotenoid spectral signals than the samples with normal histology. Classification of the samples based on the histology and overall diagnosis was carried out for all combinations of spectroscopic methods. Diagnosis based classification (majority rule of class per participant) yielded sensitivities of 0.31 to 0.77 for individual techniques, which was increased up to 0.85 when coupling multiple techniques together. Likewise, specificities of 0.50 to 0.67 were obtained for individual techniques, which was increased up to 0.78 when coupling multiple techniques together. It was noted that the use of antidepressants contributed to false positives, which is believed to be associated with increased serotonin levels observed in the gut mucosa in both celiac disease and the use of selective serotonin reuptake inhibitors (SSRIs); however, future work with greater numbers is required to confirm this observation. Inclusion of two additional spectroscopic methods could improve the accuracy of diagnosis (0.78) by 7% over Raman alone (0.73). This demonstrates the potential for further exploration and development of a multispectroscopic system for disease diagnosis.
Collapse
Affiliation(s)
- Sara J Fraser-Miller
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Jeremy S Rooney
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Michael Lau
- Southern Community Laboratories, Dunedin 9016, New Zealand
| | - Keith C Gordon
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Michael Schultz
- Gastroenterology Research Unit, Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand.,Mercy Hospital, Dunedin 9010, New Zealand.,Gastroenterology Department, Southern District Health Board, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Zykova VA, Adichtchev SV, Surovtsev NV. Effect of the Hydrocarbon Chain Disorder in Phosphatidylcholine Bilayers on Gigahertz Sound Velocity. J Phys Chem B 2020; 124:9079-9085. [PMID: 32970434 DOI: 10.1021/acs.jpcb.0c06043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Suspensions of multilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and hydrated and dehydrated aligned multilamellar samples of DMPC were studied by Brillouin spectroscopy in the temperature range from 90 to 333 K. The sound velocity of the longitudinal acoustic wave was evaluated from the Brillouin spectra. It was found that phase transition, hydration state, and planar or vesicular form of bilayers affect the gigahertz sound velocity. Usually, the temperature dependence of the sound velocity is weak in solid substances. Amazingly, the sound velocity of hydrated DMPC samples showed significant temperature-induced changes of up to 1.8 times, even within the solid-like gel phase. We explained this effect by temperature-induced excitations of the disordered conformational states of the hydrocarbon chains as well as anharmonic effects. In addition, the relevance of the gigahertz sound velocity to the description of subterahertz Raman features was demonstrated.
Collapse
Affiliation(s)
- V A Zykova
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - S V Adichtchev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Leonov DV, Dzuba SA, Surovtsev NV. Membrane-Sugar Interactions Probed by Low-Frequency Raman Spectroscopy: The Monolayer Adsorption Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11655-11660. [PMID: 32975956 DOI: 10.1021/acs.langmuir.0c02458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Small sugars are known to stabilize biological membranes under extreme conditions of freezing and desiccation. The proposed mechanisms of stabilization suggest membrane-sugar interactions to be either attractive or repulsive. To obtain new insight into the problem, we use a recently developed low-frequency Raman scattering approach which allows detecting membrane mechanical vibrations. For model membranes of palmitoyl-oleoyl-glycero-phosphocholine (POPC) hydrated in aqueous sucrose and trehalose solutions, we studied the Raman peak between 12 and 15 cm-1 that is attributed to an eigenmode of the normal mechanical vibrations of a lipid monolayer. For both sugars, similar results were obtained. With an increase in sugar concentration in solution, the frequency position of the peak was found to decrease by ∼13% which was interpreted as a consequence of the membrane thickening due sugar monolayer adsorption on the membrane surface. The concentration dependence of the peak frequency position was satisfactorily described by a Langmuir monolayer adsorption model. It is concluded that, at small sugar concentrations (less than 0.2 M), the membrane-sugar interactions are attractive, while at higher concentrations (more than 0.4 M) the attraction disappears. The data obtained show that one sugar molecule on the surface interacts with approximately 3-4 polar lipid heads.
Collapse
Affiliation(s)
- Dmitry V Leonov
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikolay V Surovtsev
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Leonov DV, Adichtchev SV, Dzuba SA, Surovtsev NV. Vibrational layer eigenmodes of binary phospholipid-cholesterol bilayers at low temperatures. Phys Rev E 2019; 99:022417. [PMID: 30934267 DOI: 10.1103/physreve.99.022417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 06/09/2023]
Abstract
Raman spectra in the low-frequency spectral range-between 5 and 90cm^{-1}-were studied for multilamellar bilayers prepared with cholesterol (Chol) and phospholipids of three different types: doubly unsaturated lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), monounsaturated lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and fully saturated lipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The narrow peak seen below 250 K and positioned between 9 and 18cm^{-1}-depending on the system and temperature-was attributed to the vibrational eigenmode of a lipid monolayer. For the DOPC-Chol bilayer, the peak position and the peak width were found to monotonically increase and decrease, respectively, with the Chol concentration. For POPC-Chol and DMPC-Chol bilayers, these parameters revealed nonmonotonic concentration dependences, with an apparent minimum at the intermediate Chol content. The peak intensity was ascribed to interleaflet coupling. As in the literature, a coexistence of liquid-ordered and solid-ordered domains was suggested for the DMPC-Chol and POPC-Chol bilayers; the Chol concentration dependences of Raman peak parameters were discussed in line with this suggestion, under the assumption that the different composition of coexisting domains conserves upon cooling. We demonstrated that the obtained Raman data disagree with the suggested domain coexistence if the domain sizes are substantially larger than the lipid layer thickness.
Collapse
Affiliation(s)
- D V Leonov
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - S V Adichtchev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - S A Dzuba
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Leonov DV, Dzuba SA, Surovtsev NV. Normal vibrations of ternary DOPC/DPPC/cholesterol lipid bilayers by low-frequency Raman spectroscopy. RSC Adv 2019; 9:34451-34456. [PMID: 35530012 PMCID: PMC9073921 DOI: 10.1039/c9ra06114b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/20/2019] [Indexed: 11/23/2022] Open
Abstract
A lipid bilayer containing a ternary mixture of low- and high-melting lipids and cholesterol (Chol) can give rise to domain formation, referred to as lipid rafts. Low-frequency Raman spectroscopy at reduced temperatures allows detection of normal membrane mechanical vibrations. In this work, Raman spectra were obtained in the spectral range between 5 and 90 cm−1 for bilayers prepared from dioleoyl-glycero-phosphocholine (DOPC), dipalmitoyl-glycero-phosphocholine (DPPC) and Chol. A narrow peak detected between 13 and 16 cm−1 was attributed to the vibrational eigenmode of a lipid monolayer (a leaflet). For the equimolar DOPC/DPPC ratio, the Chol concentration dependence for the peak position, width and amplitude may be divided into three distinct ranges: below 9 mol%, the intermediate range between 9 mol% and 38 mol%, and above 38 mol%. In the intermediate range the peak position attains its minimum, and the peak width drops approximately by a factor of two as compared with the Chol-free bilayers. Meanwhile, this range is known for raft formation in a fluid state. The obtained results may be interpreted as evidence that bilayer structures in the raft-containing fluid state may be frozen at low temperatures. The drop of peak width indicates that at the spatial scale of the experiment (∼2.5 nm) the intermolecular bilayer structure with raft formation becomes more homogeneous and more cohesive. Upon lipid raft formation, the Raman peak corresponding to monolayer normal mechanical vibrations drops remarkably in position and width.![]()
Collapse
Affiliation(s)
- Dmitry V. Leonov
- Department of Physics
- Novosibirsk State University
- Novosibirsk
- Russia
| | - Sergei A. Dzuba
- Department of Physics
- Novosibirsk State University
- Novosibirsk
- Russia
- Voevodsky Institute of Chemical Kinetics and Combustion
| | - Nikolay V. Surovtsev
- Department of Physics
- Novosibirsk State University
- Novosibirsk
- Russia
- Institute of Automation and Electrometry
| |
Collapse
|
8
|
Surovtsev NV. Suppression of spurious background in low-frequency Raman spectroscopy. ACTA ACUST UNITED AC 2017. [DOI: 10.3103/s8756699017030086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|