de Oliveira MJ. Stochastic quantum thermodynamics, entropy production, and transport properties of a bosonic system.
Phys Rev E 2018;
97:012105. [PMID:
29448462 DOI:
10.1103/physreve.97.012105]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Indexed: 11/07/2022]
Abstract
The transport properties of a bosonic chain have been calculated by placing the ends of the chain in contact with thermal and particle reservoirs at different temperatures and chemical potentials. The contact with the reservoirs is described by the use of a quantum Fokker-Planck-Kramers equation, which is a canonical quantization of the classical Fokker-Planck-Kramers equation. From the quantum equation we obtain equations for the covariances of the creation and annihilation boson operators and solve them in the stationary state for small interactions. From the covariances we determine the Onsager coefficients and in particular the conductance, which was found to be finite for any chain size leading to an infinite conductivity and the absence of Fourier's law.
Collapse