1
|
Babjak R, Willingale L, Arefiev A, Vranic M. Direct Laser Acceleration in Underdense Plasmas with Multi-PW Lasers: A Path to High-Charge, GeV-Class Electron Bunches. PHYSICAL REVIEW LETTERS 2024; 132:125001. [PMID: 38579225 DOI: 10.1103/physrevlett.132.125001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/22/2024] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
The direct laser acceleration (DLA) of electrons in underdense plasmas can provide hundreds of nC of electrons accelerated to near-GeV energies using currently available lasers. Here we demonstrate the key role of electron transverse displacement in the acceleration and use it to analytically predict the expected maximum electron energies. The energy scaling is shown to be in agreement with full-scale quasi-3D particle-in-cell simulations of a laser pulse propagating through a preformed guiding channel and can be directly used for optimizing DLA in near-future laser facilities. The strategy towards optimizing DLA through matched laser focusing is presented for a wide range of plasma densities paired with current and near-future laser technology. Electron energies in excess of 10 GeV are accessible for lasers at I∼10^{21} W/cm^{2}.
Collapse
Affiliation(s)
- R Babjak
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
- Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 1782/3, 182 00 Praha 8, Czechia
| | - L Willingale
- Gérard Mourou Center for Ultrafast Optical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A Arefiev
- University of California San Diego, La Jolla, California 92093, USA
| | - M Vranic
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| |
Collapse
|
2
|
Song H, Sheng Z, Zhao H, An X, Weng S, Chen M, Yu T, Zhang J. Spiral copropagation of two relativistic intense laser beams in a plasma channel. Phys Rev E 2023; 108:055202. [PMID: 38115536 DOI: 10.1103/physreve.108.055202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
The copropagation of two relativistic intense laser beams with orthogonal polarization in a parabolic plasma channel is studied analytically and numerically. A set of coupled equations for the evolution of the laser spot sizes and transverse centroids are derived by use of the variational approach. It is shown that the centroids of the two beams can spiral and oscillate around each other along the channel axis, where the characteristic frequency is determined both by the laser and plasma parameters. The results are verified by direct numerical solution of the relativistic nonlinear Schrödinger equations for the laser envelopes as well as three-dimensional particle-in-cell simulations. In the case with two ultrashort laser pulses when laser wakefields are excited, it is shown that the two wake bubbles driven by the laser pulses can spiral and oscillate around each other in a way similar to the two pulses. This can be well controlled by adjusting the incidence angle and separation distance between the two laser pulses. Preliminary studies show that externally injected electron beams can follow the trajectories of the oscillating bubbles. Our studies suggest a new way to control the coupling of two intense lasers in plasma for various applications, such as electron acceleration and radiation generation.
Collapse
Affiliation(s)
- Huanyu Song
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengming Sheng
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Hanzhi Zhao
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyan An
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Suming Weng
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Chen
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tongpu Yu
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| | - Jie Zhang
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Gong Z, Mackenroth F, Wang T, Yan XQ, Toncian T, Arefiev AV. Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields. Phys Rev E 2020; 102:013206. [PMID: 32795027 DOI: 10.1103/physreve.102.013206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
A high-intensity laser beam propagating through a dense plasma drives a strong current that robustly sustains a strong quasistatic azimuthal magnetic field. The laser field efficiently accelerates electrons in such a field that confines the transverse motion and deflects the electrons in the forward direction. Its advantage is a threshold rather than resonant behavior, accelerating electrons to high energies for sufficiently strong laser-driven currents. We study the electron dynamics via a test-electron model, specifically deriving the corresponding critical current density. We confirm the model's predictions by numerical simulations, indicating energy gains two orders of magnitude higher than achievable without the magnetic field.
Collapse
Affiliation(s)
- Z Gong
- SKLNPT, KLHEDP and CAPT, School of Physics, Peking University, Beijing 100871, China
- Center for High Energy Density Science, The University of Texas at Austin, Austin, Texas 78712, USA
| | - F Mackenroth
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - T Wang
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - X Q Yan
- SKLNPT, KLHEDP and CAPT, School of Physics, Peking University, Beijing 100871, China
| | - T Toncian
- Institute for Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden, Germany
| | - A V Arefiev
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
4
|
Gong Z, Mackenroth F, Yan XQ, Arefiev AV. Radiation reaction as an energy enhancement mechanism for laser-irradiated electrons in a strong plasma magnetic field. Sci Rep 2019; 9:17181. [PMID: 31748597 PMCID: PMC6868192 DOI: 10.1038/s41598-019-53644-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/04/2019] [Indexed: 11/15/2022] Open
Abstract
Conventionally, friction is understood as a mechanism depleting a physical system of energy and as an unavoidable feature of any realistic device involving moving parts. In this work, we demonstrate that this intuitive picture loses validity in nonlinear quantum electrodynamics, exemplified in a scenario where spatially random friction counter-intuitively results in a highly directional energy flow. This peculiar behavior is caused by radiation friction, i.e., the energy loss of an accelerated charge due to the emission of radiation. We demonstrate analytically and numerically how radiation friction can dramatically enhance the energy gain by electrons from a laser pulse in a strong magnetic field that naturally arises in dense laser-irradiated plasma. We find the directional energy boost to be due to the transverse electron momentum being reduced through friction whence the driving laser can accelerate the electron more efficiently. In the considered example, the energy of the laser-accelerated electrons is enhanced by orders of magnitude, which then leads to highly directional emission of gamma-rays induced by the plasma magnetic field.
Collapse
Affiliation(s)
- Z Gong
- SKLNPT, KLHEDP and CAPT, School of Physics, Peking University, Beijing, 100871, China.,Center for High Energy Density Science, The University of Texas at Austin, Austin, TX, 78712, USA
| | - F Mackenroth
- Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany.,Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - X Q Yan
- SKLNPT, KLHEDP and CAPT, School of Physics, Peking University, Beijing, 100871, China
| | - A V Arefiev
- Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA, 92093, USA. .,Center for Energy Research, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|