1
|
Farooqi ZUR, Ahmad I, Ditta A, Ilic P, Amin M, Naveed AB, Gulzar A. Types, sources, socioeconomic impacts, and control strategies of environmental noise: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81087-81111. [PMID: 36201075 DOI: 10.1007/s11356-022-23328-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Noise exposure has reached an alarming degree over the years because of rapid growth in the industry, transportation, and urbanization. Therefore, it is a dire need to provide awareness of the sources and mitigation strategies of noise, and to highlight the health, and socio-economic impacts of noise. A few research studies have documented this emerging issue; however, there is no comprehensive document describing all types of noise, their impacts on living organisms, and control strategies. This review article summarizes the sources of noise; their effects on industrial workers, citizens, and animals; and the value of property in noisy areas. The plethora of literature is showing an increased level of noise in various cities of the world, which have various health consequences such as high blood pressure, insomnia, nausea, heart attack, exhaustion, dizziness, headache, and triggered hearing loss. Apart from humans, noise also affects animal habitat, preying, and reproduction ability; increases heart rate and hearing loss to even death and loss in property value; and impairs the hospital environment. Finally, we have discussed the possible strategies to mitigate the noise problem, policy statements, and regulations to be followed, with future research directions based on the identified research gaps.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal Dir (U),, Khyber Pakhtunkhwa, 18000, Pakistan.
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Predrag Ilic
- PSRI Institute for protection and ecology of the Republic of Srpska, Banja Luka, Vidovdanska 43, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Muhammad Amin
- Department of Energy Systems Engineering, Seoul National University, Seoul, Republic of Korea
| | - Abdul Basit Naveed
- School of Natural Science, National University of Science and Technology (NUST), Islamabad, 44320, Pakistan
| | - Aadil Gulzar
- Deptartment of Environmental Science, University of Kashmir, Srinagar, J & K, 190006, India
| |
Collapse
|
2
|
Yu C, Wang J. Data mining and mathematical models in cancer prognosis and prediction. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:285-307. [PMID: 37724193 PMCID: PMC10388766 DOI: 10.1515/mr-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 09/20/2023]
Abstract
Cancer is a fetal and complex disease. Individual differences of the same cancer type or the same patient at different stages of cancer development may require distinct treatments. Pathological differences are reflected in tissues, cells and gene levels etc. The interactions between the cancer cells and nearby microenvironments can also influence the cancer progression and metastasis. It is a huge challenge to understand all of these mechanistically and quantitatively. Researchers applied pattern recognition algorithms such as machine learning or data mining to predict cancer types or classifications. With the rapidly growing and available computing powers, researchers begin to integrate huge data sets, multi-dimensional data types and information. The cells are controlled by the gene expressions determined by the promoter sequences and transcription regulators. For example, the changes in the gene expression through these underlying mechanisms can modify cell progressing in the cell-cycle. Such molecular activities can be governed by the gene regulations through the underlying gene regulatory networks, which are essential for cancer study when the information and gene regulations are clear and available. In this review, we briefly introduce several machine learning methods of cancer prediction and classification which include Artificial Neural Networks (ANNs), Decision Trees (DTs), Support Vector Machine (SVM) and naive Bayes. Then we describe a few typical models for building up gene regulatory networks such as Correlation, Regression and Bayes methods based on available data. These methods can help on cancer diagnosis such as susceptibility, recurrence, survival etc. At last, we summarize and compare the modeling methods to analyze the development and progression of cancer through gene regulatory networks. These models can provide possible physical strategies to analyze cancer progression in a systematic and quantitative way.
Collapse
Affiliation(s)
- Chong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- Department of Statistics, JiLin University of Finance and Economics, Changchun, Jilin Province, China
| | - Jin Wang
- Department of Chemistry and of Physics and Astronomy, State University of New York, Stony Brook, NY, USA
| |
Collapse
|
3
|
Chen L, Wang Y, Liu J, Wang H. Coloured noise induces phenotypic diversity with energy dissipation. Biosystems 2022; 214:104648. [PMID: 35218875 DOI: 10.1016/j.biosystems.2022.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/02/2022]
Abstract
Genes integrate many different sources of noise to adapt their survival strategy with energy costs, but how this noise impacts gene phenotype switching is not fully understood. Here, we refine a mechanistic model with multiplicative and additive coloured noise and analyse the influence of noise strength (NS) and autocorrelation time (AT) on gene phenotypic diversity. Different from white noise, we found that in the autocorrelation time-scale plane, increasing the multiplicative noise will broaden the bimodal region of the gene product, and additive noise will induce bimodal region drift from the lower level to the higher level, while the AT will promote this transition. Specifically, the effect of AT on gene expression is similar to a feedback loop; that is, the AT of multiplicative noise will elongate the mean first passage time (MFPT) from the low stable state to the high stable state, but it will reduce the MFPT from the high stable state to the low stable state, and the opposite is true for additive noise. Moreover, these transitions will violate the detailed equilibrium and then consume energy. By effective topology network reconstruction, we found that when the NS is small, the more obvious the bimodality is, the lower the energy dissipation; however, when the NS is large, it will consume more energy with a tendency for bimodality. The overall analysis implies that living organisms will utilize noise strength and its autocorrelation time for better survival in complex and fluctuating environments.
Collapse
Affiliation(s)
- Leiyan Chen
- School of Sciences, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yan Wang
- Department of Neurology, The First Affiliated Hospital, University of South China, HengYang, 421001, Hunan, People's Republic of China
| | - Jinrong Liu
- School of Sciences, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Haohua Wang
- School of Sciences, Hainan University, Haikou, 570228, Hainan, People's Republic of China; Hainan University, Coll Forestry, Key Laboratory of Genetics & Germplasm Innovation Tropical Special Fo, Ministry of Education, Haikou, 570228, Hainan, People's Republic of China; Hainan University, Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province, Haikou, 570228, Hainan, People's Republic of China.
| |
Collapse
|
4
|
Ham L, Jackson M, Stumpf MPH. Pathway dynamics can delineate the sources of transcriptional noise in gene expression. eLife 2021; 10:e69324. [PMID: 34636320 PMCID: PMC8608387 DOI: 10.7554/elife.69324] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Single-cell expression profiling opens up new vistas on cellular processes. Extensive cell-to-cell variability at the transcriptomic and proteomic level has been one of the stand-out observations. Because most experimental analyses are destructive we only have access to snapshot data of cellular states. This loss of temporal information presents significant challenges for inferring dynamics, as well as causes of cell-to-cell variability. In particular, we typically cannot separate dynamic variability from within cells ('intrinsic noise') from variability across the population ('extrinsic noise'). Here, we make this non-identifiability mathematically precise, allowing us to identify new experimental set-ups that can assist in resolving this non-identifiability. We show that multiple generic reporters from the same biochemical pathways (e.g. mRNA and protein) can infer magnitudes of intrinsic and extrinsic transcriptional noise, identifying sources of heterogeneity. Stochastic simulations support our theory, and demonstrate that 'pathway-reporters' compare favourably to the well-known, but often difficult to implement, dual-reporter method.
Collapse
Affiliation(s)
- Lucy Ham
- School of BioSciences, University of MelbourneMelbourneAustralia
| | - Marcel Jackson
- Department of Mathematics and Statistics, La Trobe UniversityMelbourneAustralia
| | - Michael PH Stumpf
- School of Mathematics and Statistics, University of MelbourneMelbourneAustralia
| |
Collapse
|
5
|
Jędrak J, Ochab-Marcinek A. Contributions to the 'noise floor' in gene expression in a population of dividing cells. Sci Rep 2020; 10:13533. [PMID: 32782314 PMCID: PMC7419568 DOI: 10.1038/s41598-020-69217-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/26/2020] [Indexed: 11/14/2022] Open
Abstract
Experiments with cells reveal the existence of a lower bound for protein noise, the noise floor, in highly expressed genes. Its origins are still debated. We propose a minimal model of gene expression in a proliferating bacterial cell population. The model predicts the existence of a noise floor and it semi-quantitatively reproduces the curved shape of the experimental noise vs. mean protein concentration plots. When the cell volume increases in a different manner than does the mean protein copy number, the noise floor level is determined by the cell population’s age structure and by the dependence of the mean protein concentration on cell age. Additionally, the noise floor level may depend on a biological limit for the mean number of bursts in the cell cycle. In that case, the noise floor level depends on the burst size distribution width but it is insensitive to the mean burst size. Our model quantifies the contributions of each of these mechanisms to gene expression noise.
Collapse
Affiliation(s)
- Jakub Jędrak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Anna Ochab-Marcinek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
6
|
Controlling cell-to-cell variability with synthetic gene circuits. Biochem Soc Trans 2019; 47:1795-1804. [DOI: 10.1042/bst20190295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/05/2023]
Abstract
Cell-to-cell variability originating, for example, from the intrinsic stochasticity of gene expression, presents challenges for designing synthetic gene circuits that perform robustly. Conversely, synthetic biology approaches are instrumental in uncovering mechanisms underlying variability in natural systems. With a focus on reducing noise in individual genes, the field has established a broad synthetic toolset. This includes noise control by engineering of transcription and translation mechanisms either individually, or in combination to achieve independent regulation of mean expression and its variability. Synthetic feedback circuits use these components to establish more robust operation in closed-loop, either by drawing on, but also by extending traditional engineering concepts. In this perspective, we argue that major conceptual advances will require new theory of control adapted to biology, extensions from single genes to networks, more systematic considerations of origins of variability other than intrinsic noise, and an exploration of how noise shaping, instead of noise reduction, could establish new synthetic functions or help understanding natural functions.
Collapse
|
7
|
Thornburg ZR, Melo MCR, Bianchi D, Brier TA, Crotty C, Breuer M, Smith HO, Hutchison CA, Glass JI, Luthey-Schulten Z. Kinetic Modeling of the Genetic Information Processes in a Minimal Cell. Front Mol Biosci 2019; 6:130. [PMID: 31850364 PMCID: PMC6892953 DOI: 10.3389/fmolb.2019.00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Abstract
JCVI-syn3A is a minimal bacterial cell with a 543 kbp genome consisting of 493 genes. For this slow growing minimal cell with a 105 min doubling time, we recently established the essential metabolism including the transport of required nutrients from the environment, the gene map, and genome-wide proteomics. Of the 452 protein-coding genes, 143 are assigned to metabolism and 212 are assigned to genetic information processing. Using genome-wide proteomics and experimentally measured kinetic parameters from the literature we present here kinetic models for the genetic information processes of DNA replication, replication initiation, transcription, and translation which are solved stochastically and averaged over 1,000 replicates/cells. The model predicts the time required for replication initiation and DNA replication to be 8 and 50 min on average respectively and the number of proteins and ribosomal components to be approximately doubled in a cell cycle. The model of genetic information processing when combined with the essential metabolic and cell growth networks will provide a powerful platform for studying the fundamental principles of life.
Collapse
Affiliation(s)
- Zane R Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marcelo C R Melo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Machine Biology Group, Department of Psychiatry, Microbiology, and Bioengineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David Bianchi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Troy A Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Cole Crotty
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marian Breuer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Hamilton O Smith
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Clyde A Hutchison
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - John I Glass
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
8
|
Ali MZ, Choubey S. Decoding the grammar of transcriptional regulation from RNA polymerase measurements: models and their applications. Phys Biol 2019; 16:061001. [PMID: 31603077 DOI: 10.1088/1478-3975/ab45bf] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The genomic revolution has indubitably brought about a paradigm shift in the field of molecular biology, wherein we can sequence, write and re-write genomes. In spite of achieving such feats, we still lack a quantitative understanding of how cells integrate environmental and intra-cellular signals at the promoter and accordingly regulate the production of messenger RNAs. This current state of affairs is being redressed by recent experimental breakthroughs which enable the counting of RNA polymerase molecules (or the corresponding nascent RNAs) engaged in the process of transcribing a gene at the single-cell level. Theorists, in conjunction, have sought to unravel the grammar of transcriptional regulation by harnessing the various statistical properties of these measurements. In this review, we focus on the recent progress in developing falsifiable models of transcription that aim to connect the molecular mechanisms of transcription to single-cell polymerase measurements. We discuss studies where the application of such models to the experimental data have led to novel mechanistic insights into the process of transcriptional regulation. Such interplay between theory and experiments will likely contribute towards the exciting journey of unfurling the governing principles of transcriptional regulation ranging from bacteria to higher organisms.
Collapse
Affiliation(s)
- Md Zulfikar Ali
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA, United States of America. Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | | |
Collapse
|
9
|
A Simple and Flexible Computational Framework for Inferring Sources of Heterogeneity from Single-Cell Dynamics. Cell Syst 2019; 8:15-26.e11. [PMID: 30638813 DOI: 10.1016/j.cels.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/16/2018] [Accepted: 12/11/2018] [Indexed: 01/26/2023]
Abstract
Single-cell time-lapse data provide the means for disentangling sources of cell-to-cell and intra-cellular variability, a key step for understanding heterogeneity in cell populations. However, single-cell analysis with dynamic models is a challenging open problem: current inference methods address only single-gene expression or neglect parameter correlations. We report on a simple, flexible, and scalable method for estimating cell-specific and population-average parameters of non-linear mixed-effects models of cellular networks, demonstrating its accuracy with a published model and dataset. We also propose sensitivity analysis for identifying which biological sub-processes quantitatively and dynamically contribute to cell-to-cell variability. Our application to endocytosis in yeast demonstrates that dynamic models of realistic size can be developed for the analysis of single-cell data and that shifting the focus from single reactions or parameters to nuanced and time-dependent contributions of sub-processes helps biological interpretation. Generality and simplicity of the approach will facilitate customized extensions for analyzing single-cell dynamics.
Collapse
|
10
|
Role of noise and parametric variation in the dynamics of gene regulatory circuits. NPJ Syst Biol Appl 2018; 4:40. [PMID: 30416751 PMCID: PMC6218471 DOI: 10.1038/s41540-018-0076-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
Stochasticity in gene expression impacts the dynamics and functions of gene regulatory circuits. Intrinsic noises, including those that are caused by low copy number of molecules and transcriptional bursting, are usually studied by stochastic simulations. However, the role of extrinsic factors, such as cell-to-cell variability and heterogeneity in the microenvironment, is still elusive. To evaluate the effects of both the intrinsic and extrinsic noises, we develop a method, named sRACIPE, by integrating stochastic analysis with random circuit perturbation (RACIPE) method. RACIPE uniquely generates and analyzes an ensemble of models with random kinetic parameters. Previously, we have shown that the gene expression from random models form robust and functionally related clusters. In sRACIPE we further develop two stochastic simulation schemes, aiming to reduce the computational cost without sacrificing the convergence of statistics. One scheme uses constant noise to capture the basins of attraction, and the other one uses simulated annealing to detect the stability of states. By testing the methods on several synthetic gene regulatory circuits and an epithelial-mesenchymal transition network in squamous cell carcinoma, we demonstrate that sRACIPE can interpret the experimental observations from single-cell gene expression data. We observe that parametric variation (the spread of parameters around a median value) increases the spread of the gene expression clusters, whereas high noise merges the states. Our approach quantifies the robustness of a gene circuit in the presence of noise and sheds light on a new mechanism of noise-induced hybrid states. We have implemented sRACIPE as an R package.
Collapse
|
11
|
Lin J, Amir A. Homeostasis of protein and mRNA concentrations in growing cells. Nat Commun 2018; 9:4496. [PMID: 30374016 PMCID: PMC6206055 DOI: 10.1038/s41467-018-06714-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Many experiments show that the numbers of mRNA and protein are proportional to the cell volume in growing cells. However, models of stochastic gene expression often assume constant transcription rate per gene and constant translation rate per mRNA, which are incompatible with these experiments. Here, we construct a minimal gene expression model to fill this gap. Assuming ribosomes and RNA polymerases are limiting in gene expression, we show that the numbers of proteins and mRNAs both grow exponentially during the cell cycle and that the concentrations of all mRNAs and proteins achieve cellular homeostasis; the competition between genes for the RNA polymerases makes the transcription rate independent of the genome number. Furthermore, by extending the model to situations in which DNA (mRNA) can be saturated by RNA polymerases (ribosomes) and becomes limiting, we predict a transition from exponential to linear growth of cell volume as the protein-to-DNA ratio increases.
Collapse
Affiliation(s)
- Jie Lin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
12
|
Earnest TM, Cole JA, Luthey-Schulten Z. Simulating biological processes: stochastic physics from whole cells to colonies. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:052601. [PMID: 29424367 DOI: 10.1088/1361-6633/aaae2c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a 'minimal cell'. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.
Collapse
Affiliation(s)
- Tyler M Earnest
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, United States of America. National Center for Supercomputing Applications, University of Illinois, Urbana, IL, 61801, United States of America
| | | | | |
Collapse
|