1
|
Sharma V, Collins LA, White AJ. Stochastic and mixed density functional theory within the projector augmented wave formalism for simulation of warm dense matter. Phys Rev E 2023; 108:L023201. [PMID: 37723794 DOI: 10.1103/physreve.108.l023201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 09/20/2023]
Abstract
Stochastic density functional theory (DFT) and mixed stochastic-deterministic DFT are burgeoning approaches for the calculation of the equation of state and transport properties in materials under extreme conditions. In the intermediate warm dense matter regime, a state between correlated condensed matter and kinetic plasma, electrons can range from being highly localized around nuclei to delocalized over the whole simulation cell. The plane-wave basis pseudopotential approach is thus the typical tool of choice for modeling such systems at the DFT level. Unfortunately, stochastic DFT methods scale as the square of the maximum plane-wave energy in this basis. To reduce the effect of this scaling and improve the overall description of the electrons within the pseudopotential approximation, we present stochastic and mixed DFT approaches developed and implemented within the projector augmented wave formalism. We compare results between the different DFT approaches for both single-point and molecular dynamics trajectories and present calculations of self-diffusion coefficients of solid density carbon from 1 to 50 eV.
Collapse
Affiliation(s)
- Vidushi Sharma
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Lee A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Alexander J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
2
|
Lan YS, Gu YJ, Li ZG, Li GJ, Liu L, Wang ZQ, Chen QF, Chen XR. Transport properties of a quasisymmetric binary nitrogen-oxygen mixture in the warm dense regime. Phys Rev E 2022; 105:015201. [PMID: 35193253 DOI: 10.1103/physreve.105.015201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022]
Abstract
Transport properties of mixtures in the warm dense matter (WDM) regime play an important role in natural astrophysics. However, a physical understanding of ionic transport properties in quasisymmetric liquid mixtures has remained elusive. Here, we present extensive ab initio molecular dynamics (AIMD) simulations on the ionic diffusion and viscosity of a quasisymmetric binary nitrogen-oxygen (N-O) mixture in a wide warm dense regime of 8-120 kK and 4.5-8.0 g/cm^{3}. Diffusion and viscosity of N-O mixtures with different compositions are obtained by using the Green-Kubo formula. Unlike asymmetric mixtures, the change of proportions in N-O mixtures slightly affects the viscosity and diffusion in the strong-coupling region. Furthermore, the AIMD results are used to build and verify a global pseudo-ion in jellium (PIJ) model for ionic transport calculations. The PIJ model succeeds in reproducing the transport properties of N-O mixtures where ionization has occurred, and provides a promising alternative approach to obtaining comparable results to AIMD simulations with relatively small computational costs. Our current results highlight the characteristic features of the quasisymmetric binary mixtures and demonstrate the applicability of the PIJ model in the WDM regime.
Collapse
Affiliation(s)
- Yang-Shun Lan
- College of Physics, Sichuan University, Chengdu 610064, People's Republic of China.,National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Yun-Jun Gu
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Zhi-Guo Li
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Guo-Jun Li
- College of Physics, Sichuan University, Chengdu 610064, People's Republic of China.,National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Lei Liu
- School of Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhao-Qi Wang
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Qi-Feng Chen
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Xiang-Rong Chen
- College of Physics, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
3
|
White AJ, Collins LA. Fast and Universal Kohn-Sham Density Functional Theory Algorithm for Warm Dense Matter to Hot Dense Plasma. PHYSICAL REVIEW LETTERS 2020; 125:055002. [PMID: 32794867 DOI: 10.1103/physrevlett.125.055002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Understanding many processes, e.g., fusion experiments, planetary interiors, and dwarf stars, depends strongly on microscopic physics modeling of warm dense matter and hot dense plasma. This complex state of matter consists of a transient mixture of degenerate and nearly free electrons, molecules, and ions. This regime challenges both experiment and analytical modeling, necessitating predictive ab initio atomistic computation, typically based on quantum mechanical Kohn-Sham density functional theory (KS-DFT). However, cubic computational scaling with temperature and system size prohibits the use of DFT through much of the warm dense matter regime. A recently developed stochastic approach to KS-DFT can be used at high temperatures, with the exact same accuracy as the deterministic approach, but the stochastic error can converge slowly and it remains expensive for intermediate temperatures (<50 eV). We have developed a universal mixed stochastic-deterministic algorithm for DFT at any temperature. This approach leverages the physics of KS-DFT to seamlessly integrate the best aspects of these different approaches. We demonstrate that this method significantly accelerated self-consistent field calculations for temperatures from 3 to 50 eV, while producing stable molecular dynamics and accurate diffusion coefficients.
Collapse
Affiliation(s)
- A J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - L A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
4
|
Clérouin J, Arnault P, Gréa BJ, Guisset S, Vandenboomgaerde M, White AJ, Collins LA, Kress JD, Ticknor C. Static and dynamic properties of multi-ionic plasma mixtures. Phys Rev E 2020; 101:033207. [PMID: 32289916 DOI: 10.1103/physreve.101.033207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/02/2020] [Indexed: 11/07/2022]
Abstract
Complex plasma mixtures with three or more components are often encountered in astrophysics or in inertial confinement fusion (ICF) experiments. For mixtures containing species with large differences in atomic number Z, the modeling needs to consider at the same time the kinetic theory for low-Z elements combined with the theory of strongly coupled plasma for high-Z elements, as well as all the intermediate situations that can appear in multicomponent systems. For such cases, we study the pair distribution functions, self-diffusions, mutual diffusion, and viscosity for ternary mixtures at extreme conditions. These quantities can be produced from first principles using orbital free molecular dynamics at the computational expense of very intensive simulations to reach good statistics. Utilizing the first-principles results as reference data, we assess the merit of a global analytic model for transport coefficients, "pseudo-ions in jellium" (PIJ), based on an isoelectronic assumption (iso-n_{e}). With a multicomponent hypernetted-chain integral equation, we verify the quality of the iso-n_{e} prescription for describing the static structure of the mixtures. This semianalytical modeling compares well with the simulation results and allows one to consider plasma mixtures not accessible to simulations. Applications are given for the mix of materials in ICF experiments. A reduction of a multicomponent mixture to an effective binary mixture is also established in the hydrodynamic limit and compared with PIJ estimations for ICF relevant mixtures.
Collapse
Affiliation(s)
- Jean Clérouin
- CEA-DAM-DIF, F-91297 Arpajon, France.,Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Chàtel, France
| | | | | | | | | | - Alexander J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Lee A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Joel D Kress
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Christopher Ticknor
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
5
|
Wang ZQ, Tang J, Hou Y, Chen QF, Chen XR, Dai JY, Meng XJ, Gu YJ, Liu L, Li GJ, Lan YS, Li ZG. Benchmarking the effective one-component plasma model for warm dense neon and krypton within quantum molecular dynamics simulation. Phys Rev E 2020; 101:023302. [PMID: 32168678 DOI: 10.1103/physreve.101.023302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/15/2020] [Indexed: 11/07/2022]
Abstract
The effective one-component plasma (EOCP) model has provided an efficient approach to obtaining many important thermophysical parameters of hot dense matter [J. Clérouin, et al., Phys. Rev. Lett. 116, 115003 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.115003]. In this paper, we perform extensive quantum molecular dynamics (QMD) simulations to determine the equations of state, ionic structures, and ionic transport properties of neon and krypton within the warm dense matter (WDM) regime where the density (ρ) is up to 12 g/cm^{3} and the temperature (T) is up to 100 kK. The simulated data are then used as a benchmark to explicitly evaluate the EOCP and Yukawa models. It is found that, within present ρ-T regime, the EOCP model can excellently reproduce the diffusion and viscosity coefficients of neon and krypton due to the fact that this model defines a system which nearly reproduces the actual physical states of WDM. Therefore, the EOCP model may be a promising alternative approach to reasonably predicting the transport behaviors of matter in WDM regime at lower QMD computational cost. The evaluation of Yukawa model shows that the consideration of the energy level broadening effect in the average atom model is necessary. Finally, with the help of EOCP model, the Stokes-Einstein relationships about neon and krypton are discussed, and fruitful plasma parameters as well as a practical ρ-T-dependent formula of the effective coupling parameter are obtained. These results not only provide valuable information for future theoretical and experimental studies on dense neon and krypton but also reveal the applicability of the EOCP model and the limitation of the Yukawa model in WDM regime and further support the continuing search for a unified description of ionic transport in dense plasma.
Collapse
Affiliation(s)
- Zhao-Qi Wang
- College of Physics, Sichuan University, Chengdu 610065, People's Republic of China.,National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Jun Tang
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, People's Republic of China
| | - Yong Hou
- Department of Physics, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - Qi-Feng Chen
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Xiang-Rong Chen
- College of Physics, Sichuan University, Chengdu 610065, People's Republic of China
| | - Jia-Yu Dai
- Department of Physics, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - Xu-Jun Meng
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, People's Republic of China
| | - Yun-Jun Gu
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Lei Liu
- College of Physics, Sichuan University, Chengdu 610065, People's Republic of China.,National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Guo-Jun Li
- College of Physics, Sichuan University, Chengdu 610065, People's Republic of China.,National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Yang-Shun Lan
- College of Physics, Sichuan University, Chengdu 610065, People's Republic of China.,National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Zhi-Guo Li
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| |
Collapse
|
6
|
Viciconte G, Gréa BJ, Godeferd FS, Arnault P, Clérouin J. Sudden diffusion of turbulent mixing layers in weakly coupled plasmas under compression. Phys Rev E 2020; 100:063205. [PMID: 31962510 DOI: 10.1103/physreve.100.063205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 11/07/2022]
Abstract
The rapid growth of viscosity driven by temperature increase in turbulent plasmas under compression induces a sudden dissipation of kinetic energy, eventually leading to the relaminarization of the flow [Davidovits and Fisch, Phys. Rev. Lett. 116, 105004 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.105004]. The interdiffusion between species is also greatly enhanced, so that mixing layers appearing at interfaces between different materials are subjected to strong dynamical modifications. The result is a competition between the vanishing turbulent diffusion and the expanding plasma microscopic diffusion. In direct numerical simulations with conditions relevant to inertial confinement fusion, we evidence regimes where compressed spherical mixing layers are quickly diffused during the relaminarization process. Using one and two-point turbulent statistics, we also detail how mixing heterogeneities are smoothed out.
Collapse
Affiliation(s)
- Giovanni Viciconte
- CEA, DAM, DIF, F-91297 Arpajon, France and LMFA UMR5509-CNRS, Université de Lyon, École centrale de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, Écully, France
| | | | - Fabien S Godeferd
- LMFA UMR5509-CNRS, Université de Lyon, École centrale de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, Écully, France
| | | | | |
Collapse
|
7
|
White AJ, Ticknor C, Meyer ER, Kress JD, Collins LA. Multicomponent mutual diffusion in the warm, dense matter regime. Phys Rev E 2019; 100:033213. [PMID: 31639979 DOI: 10.1103/physreve.100.033213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Indexed: 11/07/2022]
Abstract
We present the formulation, simulations, and results for multicomponent mutual diffusion coefficients in the warm, dense matter regime. While binary mixtures have received considerable attention for mass transport, far fewer studies have addressed ternary and more complex systems. We therefore explicitly examine ternary systems utilizing the Maxwell-Stefan formulation that relates diffusion to gradients in the chemical potential. Onsager coefficients then connect the macroscopic diffusion to microscopic particle motions, evinced in trajectories characterized by positions and velocities, through various autocorrelation functions (ACFs). These trajectories are generated by molecular dynamics (MD) simulations either through the Born-Oppenheimer approximation, which treats the ions classically and the electrons quantum-mechanically by an orbital-free density-functional theory, or through a classical MD approach with Yukawa pair-potentials, whose effective ionizations and electron screening length derive from quantal considerations. We employ the reference-mean form of the ACFs and determine the center-of-mass coefficients through a simple reference-frame-dependent similarity transformation. The Onsager terms in turn determine the mutual diffusion coefficients. We examine a representative sample of ternary mixtures as a function of density and temperature from those with only light elements (D-Li-C, D-Li-Al) to those with highly asymmetric mass components (D-Li-Cu, D-Li-Ag, H-C-Ag). We also follow trends in the diffusion as a function of number concentration and evaluated the efficacy of various approximations such as the Darken approximation.
Collapse
Affiliation(s)
- A J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Ticknor
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - E R Meyer
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J D Kress
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - L A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|