1
|
Chauvière A, Manifacier I, Verdier C, Chagnon G, Cheddadi I, Glade N, Stéphanou A. A biomechanical model for cell sensing and migration. Comput Methods Biomech Biomed Engin 2024:1-19. [PMID: 39535176 DOI: 10.1080/10255842.2024.2427112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
We developed an original computational model for cell deformation and migration capable of accounting for the cell sensitivity to the environment and its appropriate adaptation. This cell model is ultimately intended to be used to address tissue morphogenesis. Hence it has been designed to comply with four requirements: (1) the cell should be able to probe and sense its environment and respond accordingly; (2) the model should be easy to parametrize to adapt to different cell types; (3) the model should be able to extend to 3D cases; (4) simulations should be fast enough to integrate many interacting cells. The simulations carried out focused on two aspects: first, the general behaviour of the cell on a homogeneous substrate, as observed experimentally, for model validation. This enabled us to decipher the mechanisms by which the cell can migrate, highlighting respective influences of the adhesions lifetimes and their sensitivity to traction; second, it predicts the sensitivity of the cell to an anisotropic patterned substrate, in agreement with recently published experiments. The results show that mechanosensors simulated by the model make it possible to reproduce such experiments in terms of migration bias generated by the substrate anisotropy. Here again, the model provides a biomechanical explanation of this phenomenon, depending on cell-matrix interactions and adhesion maturation rate.
Collapse
Affiliation(s)
- Arnaud Chauvière
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Ian Manifacier
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Claude Verdier
- LIPhy, Université Grenoble Alpes, CNRS, Grenoble, France
| | - Grégory Chagnon
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Ibrahim Cheddadi
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Nicolas Glade
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| | - Angélique Stéphanou
- VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, CNRS, UMR 5525, Grenoble, France
| |
Collapse
|
2
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Biophysical modeling identifies an optimal hybrid amoeboid-mesenchymal phenotype for maximal T cell migration speeds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.29.564655. [PMID: 39026744 PMCID: PMC11257493 DOI: 10.1101/2023.10.29.564655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Despite recent experimental progress in characterizing cell migration mechanics, our understanding of the mechanisms governing rapid cell movement remains limited. To effectively limit tumor growth, antitumoral T cells need to rapidly migrate to find and kill cancer cells. To investigate the upper limits of cell speed, we developed a new hybrid stochastic-mean field model of bleb-based cell motility. We first examined the potential for adhesion-free bleb-based migration and show that cells migrate inefficiently in the absence of adhesion-based forces, i.e., cell swimming. While no cortical contractility oscillations are needed for cells to swim in viscoelastic media, high-to-low cortical contractility oscillations are necessary for cell swimming in viscous media. This involves a high cortical contractility phase with multiple bleb nucleation events, followed by an intracellular pressure buildup recovery phase at low cortical tensions, resulting in modest net cell motion. However, our model suggests that cells can employ a hybrid bleb- and adhesion-based migration mechanism for rapid cell motility and identifies conditions for optimality. The model provides a momentum-conserving mechanism underlying rapid single-cell migration and identifies factors as design criteria for engineering T cell therapies to improve movement in mechanically complex environments.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, USA
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, USA
- Stem Cell Institute, University of Minnesota, USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, USA
| |
Collapse
|
3
|
Henley L, Finch D, Mathews F, Jones O, Woolley TE. A simple and fast method for estimating bat roost locations. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231999. [PMID: 38660598 PMCID: PMC11040240 DOI: 10.1098/rsos.231999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
Bats play a pivotal role in pest control, pollination and seed dispersal. Despite their ecological significance, locating bat roosts remains a challenging task for ecologists. Traditional field surveys are time-consuming, expensive and may disturb sensitive bat populations. In this article, we combine data from static audio detectors with a bat movement model to facilitate the detection of bat roosts. Crucially, our technique not only provides a point prediction for the most likely location of a bat roost, but because of the algorithm's speed, it can be applied over an entire landscape, resulting in a likelihood map, which provides optimal searching regions. To illustrate the success of the algorithm and highlight limitations, we apply our technique to greater horseshoe bat (Rhinolophus ferrumequinum) acoustic data acquired from six surveys from four different UK locations and over six different times in the year. Furthermore, we investigate what happens to the accuracy of our predictions in the case that the roost is not contained within the area spanned by the detectors. This innovative approach to searching rural environments holds the potential to greatly reduce the labour required for roost finding, and, hence, enhance the conservation efforts of bat populations and their habitats.
Collapse
Affiliation(s)
- Lucy Henley
- Cardiff School of Mathematics, Cardiff University, CardiffCF24 4AG, UK
| | - Domhnall Finch
- University of Sussex, John Maynard Smith Building, BrightonBN1 9RH, UK
- National Parks and Wildlife Service, North DublinD07 N7CV, Ireland
| | - Fiona Mathews
- University of Sussex, John Maynard Smith Building, BrightonBN1 9RH, UK
| | - Owen Jones
- Cardiff School of Mathematics, Cardiff University, CardiffCF24 4AG, UK
| | - Thomas E. Woolley
- Cardiff School of Mathematics, Cardiff University, CardiffCF24 4AG, UK
| |
Collapse
|
4
|
Henley L, Jones O, Mathews F, Woolley TE. Bat Motion can be Described by Leap Frogging. Bull Math Biol 2024; 86:16. [PMID: 38197980 PMCID: PMC10781826 DOI: 10.1007/s11538-023-01233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/01/2023] [Indexed: 01/11/2024]
Abstract
We present models of bat motion derived from radio-tracking data collected over 14 nights. The data presents an initial dispersal period and a return to roost period. Although a simple diffusion model fits the initial dispersal motion we show that simple convection cannot provide a description of the bats returning to their roost. By extending our model to include non-autonomous parameters, or a leap frogging form of motion, where bats on the exterior move back first, we find we are able to accurately capture the bat's motion. We discuss ways of distinguishing between the two movement descriptions and, finally, consider how the different motion descriptions would impact a bat's hunting strategy.
Collapse
Affiliation(s)
- Lucy Henley
- Cardiff School of Mathematics Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK
| | - Owen Jones
- Cardiff School of Mathematics Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK
| | - Fiona Mathews
- University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9RH, UK
| | - Thomas E Woolley
- Cardiff School of Mathematics Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK.
| |
Collapse
|
5
|
Asante-Asamani E, Grange D, Rawal D, Santiago Z, Loustau J, Brazill D. A role for myosin II clusters and membrane energy in cortex rupture for Dictyostelium discoideum. PLoS One 2022; 17:e0265380. [PMID: 35468148 PMCID: PMC9037949 DOI: 10.1371/journal.pone.0265380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Blebs, pressure driven protrusions of the cell membrane, facilitate the movement of eukaryotic cells such as the soil amoeba Dictyostelium discoideum, white blood cells and cancer cells. Blebs initiate when the cell membrane separates from the underlying cortex. A local rupture of the cortex, has been suggested as a mechanism by which blebs are initiated. However, much clarity is still needed about how cells inherently regulate rupture of the cortex in locations where blebs are expected to form. In this work, we examine the role of membrane energy and the motor protein myosin II (myosin) in facilitating the cell driven rupture of the cortex. We perform under-agarose chemotaxis experiments, using Dictyostelium discoideum cells, to visualize the dynamics of myosin and calculate changes in membrane energy in the blebbing region. To facilitate a rapid detection of blebs and analysis of the energy and myosin distribution at the cell front, we introduce an autonomous bleb detection algorithm that takes in discrete cell boundaries and returns the coordinate location of blebs with its shape characteristics. We are able to identify by microscopy naturally occurring gaps in the cortex prior to membrane detachment at sites of bleb nucleation. These gaps form at positions calculated to have high membrane energy, and are associated with areas of myosin enrichment. Myosin is also shown to accumulate in the cortex prior to bleb initiation and just before the complete disassembly of the cortex. Together our findings provide direct spatial and temporal evidence to support cortex rupture as an intrinsic bleb initiation mechanism and suggests that myosin clusters are associated with regions of high membrane energy where its contractile activity leads to a rupture of the cortex at points of maximal energy.
Collapse
Affiliation(s)
| | - Daniel Grange
- Department of Applied Mathematics, Stony Brook University, New York, New York, United States of America
| | - Devarshi Rawal
- Mathematics and Statistics Department, Hunter College, Manhattan, New York, United States of America
| | - Zully Santiago
- Department of Natural Science, Baruch College, New York, New York, United States of America
| | - John Loustau
- Mathematics and Statistics Department, Hunter College, Manhattan, New York, United States of America
| | - Derrick Brazill
- Biological Science Department, Hunter College, Manhattan, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Muñoz-López MJ, Kim H, Mori Y. A Reduced 1D Stochastic Model of Bleb-driven Cell Migration. Biophys J 2022; 121:1881-1896. [PMID: 35450826 PMCID: PMC9199100 DOI: 10.1016/j.bpj.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/01/2021] [Accepted: 04/14/2022] [Indexed: 11/02/2022] Open
Abstract
Blebs are pressure-driven protrusions that have been observed in cells undergoing apoptosis, cytokinesis, or migration, including tumour cells that use blebs to escape their organs of origin. Here, we present a minimal 1D model of bleb-driven cell motion that combines a simple mechanical model with turnover kinetics of the actin cortex and adhesions between the membrane and the cortex. The deterministic version of this model is used to study the properties of individual blebbing events. We further introduce stochastic turnover of the adhesions, which allows for spontaneous initiation of repeated blebbing events, thus leading to sustained cell travel. We explore how the main parameters of the system control the properties of the blebbing events and the speed of cell travel. Finally, we derive a further simplification by deriving a Langevin approximation to this stochastic model.
Collapse
Affiliation(s)
- María Jesús Muñoz-López
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hyunjoong Kim
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yoichiro Mori
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| |
Collapse
|
7
|
Mathematical modelling in cell migration: tackling biochemistry in changing geometries. Biochem Soc Trans 2021; 48:419-428. [PMID: 32239187 DOI: 10.1042/bst20190311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/18/2023]
Abstract
Directed cell migration poses a rich set of theoretical challenges. Broadly, these are concerned with (1) how cells sense external signal gradients and adapt; (2) how actin polymerisation is localised to drive the leading cell edge and Myosin-II molecular motors retract the cell rear; and (3) how the combined action of cellular forces and cell adhesion results in cell shape changes and net migration. Reaction-diffusion models for biological pattern formation going back to Turing have long been used to explain generic principles of gradient sensing and cell polarisation in simple, static geometries like a circle. In this minireview, we focus on recent research which aims at coupling the biochemistry with cellular mechanics and modelling cell shape changes. In particular, we want to contrast two principal modelling approaches: (1) interface tracking where the cell membrane, interfacing cell interior and exterior, is explicitly represented by a set of moving points in 2D or 3D space and (2) interface capturing. In interface capturing, the membrane is implicitly modelled analogously to a level line in a hilly landscape whose topology changes according to forces acting on the membrane. With the increased availability of high-quality 3D microscopy data of complex cell shapes, such methods will become increasingly important in data-driven, image-based modelling to better understand the mechanochemistry underpinning cell motion.
Collapse
|
8
|
Fang C, Hui TH, Wei X, Yan Z, Qian J, Lin Y. Interaction and fusion dynamics between cellular blebs. J Biomech 2018; 81:113-121. [PMID: 30366658 DOI: 10.1016/j.jbiomech.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022]
Abstract
Membrane blebbing, as a mechanism for cells to regulate their internal pressure and membrane tension, is believed to play important roles in processes such as cell migration, spreading and apoptosis. However, the fundamental question of how different blebs interact with each other during their life cycles remains largely unclear. Here, we report a combined theoretical and experimental investigation to examine how the growth and retraction of a cellular bleb are influenced by neighboring blebs as well as the fusion dynamics between them. Specifically, a boundary integral model was developed to describe the shape evolution of cell membrane during the blebbing/retracting process. We showed that a drop in the intracellular pressure will be induced by the formation of a bleb whose retraction then restores the pressure level. Consequently, the volume that a second bleb can reach was predicted to heavily depend on its initial weakened size and the time lag with respect to the first bleb, all in quantitative agreement with our experimental observations. In addition, it was found that as the strength of membrane-cortex adhesion increases, the possible coalescence of two neighboring blebs changes from smooth fusion to abrupt coalescence and eventually to no fusion at all. Phase diagrams summarizing the dependence of such transition on key physical factors, such as the intracellular pressure and bleb separation, were also obtained.
Collapse
Affiliation(s)
- Chao Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Tsz Hin Hui
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Xi Wei
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Zishen Yan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China.
| |
Collapse
|
9
|
Fang C, Hui TH, Wei X, Shao X, Lin Y. A combined experimental and theoretical investigation on cellular blebbing. Sci Rep 2017; 7:16666. [PMID: 29192221 PMCID: PMC5709380 DOI: 10.1038/s41598-017-16825-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/17/2017] [Indexed: 02/05/2023] Open
Abstract
Although accumulating evidence has demonstrated the important role of membrane blebbing in various cellular processes, the fundamental question of how the initiation/evolution of blebs are influenced by physical factors like membrane-cortex interactions and intracellular pressure remains unclear. Here, we report a combined modeling and experimental study to address this outstanding issue. Specifically, boundary integral method was used to track the motion of membrane (in 3D) during blebbing while possible rupture of the bilayer-cortex adhesion has also been taken into account. We showed that, for a given differential pressure across the cell membrane, the size of the weakened cortex must be over a critical value for blebbing to occur and the steady-state volume of a bleb is proportional to its initial growth rate, all in good agreement with recent experiments. The predicted shape evolution of blebs also matches well with our observations. Finally, a blebbing map, summarizing the essential physics involved, was obtained which exhibits three distinct regimes: no bleb formation corresponding to a low intracellular pressure or a small weakened cortex region; bleb formed with a fixed width when the disrupted cortex zone is very large; and a growing bleb resulted from progressive membrane-cortex detachment under intermediate weakened cortex size.
Collapse
Affiliation(s)
- Chao Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - T H Hui
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - X Wei
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - X Shao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China. .,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China.
| |
Collapse
|