1
|
Ptaszyński K, Aslyamov T, Esposito M. Dissipation Bounds Precision of Current Response to Kinetic Perturbations. PHYSICAL REVIEW LETTERS 2024; 133:227101. [PMID: 39672139 DOI: 10.1103/physrevlett.133.227101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 12/15/2024]
Abstract
The precision of currents in Markov networks is bounded by dissipation via the so-called thermodynamic uncertainty relation (TUR). In our Letter, we demonstrate a similar inequality that bounds the precision of the static current response to perturbations of kinetic barriers. Perturbations of such type, which affect only the system kinetics but not the thermodynamic forces, are highly important in biochemistry and nanoelectronics. We prove that our inequality cannot be derived from the standard TUR. Instead, it implies the standard TUR and provides an even tighter bound for dissipation. We also provide a procedure for obtaining the optimal response precision for a given model.
Collapse
|
2
|
Wolpert DH, Korbel J, Lynn CW, Tasnim F, Grochow JA, Kardeş G, Aimone JB, Balasubramanian V, De Giuli E, Doty D, Freitas N, Marsili M, Ouldridge TE, Richa AW, Riechers P, Roldán É, Rubenstein B, Toroczkai Z, Paradiso J. Is stochastic thermodynamics the key to understanding the energy costs of computation? Proc Natl Acad Sci U S A 2024; 121:e2321112121. [PMID: 39471216 PMCID: PMC11551414 DOI: 10.1073/pnas.2321112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Abstract
The relationship between the thermodynamic and computational properties of physical systems has been a major theoretical interest since at least the 19th century. It has also become of increasing practical importance over the last half-century as the energetic cost of digital devices has exploded. Importantly, real-world computers obey multiple physical constraints on how they work, which affects their thermodynamic properties. Moreover, many of these constraints apply to both naturally occurring computers, like brains or Eukaryotic cells, and digital systems. Most obviously, all such systems must finish their computation quickly, using as few degrees of freedom as possible. This means that they operate far from thermal equilibrium. Furthermore, many computers, both digital and biological, are modular, hierarchical systems with strong constraints on the connectivity among their subsystems. Yet another example is that to simplify their design, digital computers are required to be periodic processes governed by a global clock. None of these constraints were considered in 20th-century analyses of the thermodynamics of computation. The new field of stochastic thermodynamics provides formal tools for analyzing systems subject to all of these constraints. We argue here that these tools may help us understand at a far deeper level just how the fundamental thermodynamic properties of physical systems are related to the computation they perform.
Collapse
Affiliation(s)
- David H. Wolpert
- Santa Fe Institute, Santa Fe, NM87501
- Complexity Science Hub Vienna, Vienna1080, Austria
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ85287
- The Abdus Salam International Centre for Theoretical Physics, Trieste34151, Italy
- Albert Einstein Institute for Advanced Study in the Life Sciences, New York, NY10467
| | - Jan Korbel
- Complexity Science Hub Vienna, Vienna1080, Austria
- Institute for the Science of Complex Systems, Center for Medical Data Science (CeDAS), Medical University of Vienna, Vienna1090, Austria
| | - Christopher W. Lynn
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ08544
- Center for the Physics of Biological Function, City University of New York, New York, NY10017
- Department of Physics, Yale University, New Haven, CT06520
| | | | - Joshua A. Grochow
- Department of Computer Science, University of Colorado Boulder, Boulder, CO80309
| | - Gülce Kardeş
- Santa Fe Institute, Santa Fe, NM87501
- Department of Computer Science, University of Colorado Boulder, Boulder, CO80309
| | | | - Vijay Balasubramanian
- Santa Fe Institute, Santa Fe, NM87501
- David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, PA19104
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PU, Oxford, United Kingdom
| | - Eric De Giuli
- Department of Physics, Toronto Metropolitan University, M5B 2K3, Toronto, ON, Canada
| | - David Doty
- Department of Computer Science, University of California, 95616, Davis, CA
| | - Nahuel Freitas
- Department of Physics, University of Buenos Aires, C1053, Buenos Aires, Argentina
| | - Matteo Marsili
- The Abdus Salam International Centre for Theoretical Physics, Trieste34151, Italy
| | - Thomas E. Ouldridge
- Department of Bioengineering, Imperial College London, SW7 2AZ, London, United Kingdom
- Centre for Synthetic Biology, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Andréa W. Richa
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ85287
| | - Paul Riechers
- School of Physical and Mathematical Sciences, Nanyang Quantum Hub, Nanyang Technological University, Singapore639798, Singapore
| | - Édgar Roldán
- The Abdus Salam International Centre for Theoretical Physics, Trieste34151, Italy
| | | | - Zoltan Toroczkai
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN46556
| | - Joseph Paradiso
- Massachusetts Institute of Technology Media Lab, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
3
|
Kwon E, Park JM, Lee JS, Baek Y. Unified hierarchical relationship between thermodynamic tradeoff relations. Phys Rev E 2024; 110:044131. [PMID: 39562917 DOI: 10.1103/physreve.110.044131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/23/2024] [Indexed: 11/21/2024]
Abstract
Recent years have witnessed a surge of discoveries in the studies of thermodynamic inequalities: the thermodynamic uncertainty relation (TUR) and the entropic bound (EB) provide a lower bound on the entropy production (EP) in terms of nonequilibrium currents; the classical speed limit (CSL) expresses the lower bound on the EP using the geometry of probability distributions; the power-efficiency (PE) tradeoff dictates the maximum power achievable for a heat engine given the level of its thermal efficiency. In this study, we show that there exists a unified hierarchical structure encompassing all of these bounds, with the fundamental inequality given by an extension of the TUR (XTUR) that incorporates the most general range of currentlike and state-dependent observables. By selecting more specific observables, the TUR and the EB follow from the XTUR, and the CSL and the PE tradeoff follow from the EB. Our derivations cover both Langevin and Markov jump systems, with the first proof of the EB for the Markov jump systems and a more generalized form of the CSL. We also present concrete examples of the EB for the Markov jump systems and the generalized CSL.
Collapse
|
4
|
Chen JF, Quan HT. Optimal control theory for maximum power of Brownian heat engines. Phys Rev E 2024; 110:L042105. [PMID: 39562878 DOI: 10.1103/physreve.110.l042105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
The pursuit of achieving the maximum output power in microscopic heat engines has gained increasing attention in the field of stochastic thermodynamics. We employ the optimal control theory to study Brownian heat engines and determine the optimal heat-engine cycles in a generic damped situation, which were previously known only in the overdamped and the underdamped limits. These optimal cycles include two isothermal processes, two adiabatic processes, and an extra isochoric relaxation process at the high stiffness constraint. Our results determine the maximum output power under realistic control constraints, and also bridge the gap of the optimal cycles between the overdamped and the underdamped limits. Hence, we solve an outstanding problem in the studies of heat engines by employing the optimal control theory to stochastic thermodynamics. These findings bring valuable insights for the design of high-performance Brownian heat engines in experimental setups.
Collapse
Affiliation(s)
| | - H T Quan
- School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Lipka-Bartosik P, Perarnau-Llobet M, Brunner N. Thermodynamic computing via autonomous quantum thermal machines. SCIENCE ADVANCES 2024; 10:eadm8792. [PMID: 39231232 PMCID: PMC11758477 DOI: 10.1126/sciadv.adm8792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
We develop a physics-based model for classical computation based on autonomous quantum thermal machines. These machines consist of few interacting quantum bits (qubits) connected to several environments at different temperatures. Heat flows through the machine are here exploited for computing. The process starts by setting the temperatures of the environments according to the logical input. The machine evolves, eventually reaching a nonequilibrium steady state, from which the output of the computation can be determined via the temperature of an auxilliary finite-size reservoir. Such a machine, which we term a "thermodynamic neuron," can implement any linearly separable function, and we discuss explicitly the cases of NOT, 3-MAJORITY, and NOR gates. In turn, we show that a network of thermodynamic neurons can perform any desired function. We discuss the close connection between our model and artificial neurons (perceptrons) and argue that our model provides an alternative physics-based analog implementation of neural networks, and more generally a platform for thermodynamic computing.
Collapse
Affiliation(s)
| | | | - Nicolas Brunner
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
Tasnim F, Freitas N, Wolpert DH. Entropy production in communication channels. Phys Rev E 2024; 110:034101. [PMID: 39425415 DOI: 10.1103/physreve.110.034101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 10/21/2024]
Abstract
In many complex systems, whether biological or artificial, the thermodynamic costs of communication among their components are large. These systems also tend to split information transmitted between any two components across multiple channels. A common hypothesis is that such inverse multiplexing strategies reduce total thermodynamic costs. So far, however, there have been no physics-based results supporting this hypothesis. This gap existed partially because we have lacked a theoretical framework that addresses the interplay of thermodynamics and information in off-equilibrium systems. Here we present the first study that rigorously combines such a framework, stochastic thermodynamics, with Shannon information theory. We develop a minimal model that captures the fundamental features common to a wide variety of communication systems, and study the relationship between the entropy production of the communication process and the channel capacity, the canonical measure of the communication capability of a channel. In contrast to what is assumed in previous works not based on first principles, we show that the entropy production is not always a convex and monotonically increasing function of the channel capacity. However, those two properties are recovered for sufficiently high channel capacity. These results clarify when and how to split a single communication stream across multiple channels.
Collapse
Affiliation(s)
| | - Nahuel Freitas
- Departamento de Fisica, FCEyN, UBA, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - David H Wolpert
- Santa Fe Institute, Santa Fe, New Mexico, USA; Complexity Science Hub, Vienna, Austria; Arizona State University, Tempe, Arizona, USA; International Center for Theoretical Physics, Trieste 34151, Italy; and Albert Einstein Institute for Advanced Study, New York, New York, USA
| |
Collapse
|
7
|
Park JM, Park H, Lee JS. Stochastic differential equation for a system coupled to a thermostatic bath via an arbitrary interaction Hamiltonian. Phys Rev E 2024; 110:014143. [PMID: 39160900 DOI: 10.1103/physreve.110.014143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/20/2024] [Indexed: 08/21/2024]
Abstract
The conventional Langevin equation offers a mathematically convenient framework for investigating open stochastic systems interacting with their environment or a bath. However, it is not suitable for a wide variety of systems whose dynamics rely on the nature of the environmental interaction, as the equation does not incorporate any specific information regarding that interaction. Here, we present a stochastic differential equation (SDE) for an open system coupled to a thermostatic bath via an arbitrary interaction Hamiltonian. This SDE encodes the interaction information to a fictitious potential (mean force) and a position-dependent damping coefficient. Surprisingly, we find that the conventional Langevin equation can be recovered in the presence of arbitrary strong interactions given two conditions: translational invariance of the potential and mutual independence of baths. Our results provide a comprehensive framework for studying open stochastic systems with an arbitrary interaction Hamiltonian and yield deeper insight into why various experiments fit the conventional Langevin description regardless of the strength or type of interaction.
Collapse
|
8
|
Frezzato D. Steady-state probabilities for Markov jump processes in terms of powers of the transition rate matrix. J Chem Phys 2024; 160:234111. [PMID: 38904405 DOI: 10.1063/5.0217202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Several types of dynamics at stationarity can be described in terms of a Markov jump process among a finite number N of representative sites. Before dealing with the dynamical aspects, one basic problem consists in expressing the a priori steady-state occupation probabilities of the sites. In particular, one wishes to go beyond the mere black-box computational tools and find expressions in which the jump rate constants appear explicitly, therefore allowing for a potential design/control of the network. For strongly connected networks admitting a unique stationary state with all sites populated, here we express the occupation probabilities in terms of a formula that involves powers of the transition rate matrix up to order N - 1. We also provide an expression of the derivatives with respect to the jump rate constants, possibly useful in sensitivity analysis frameworks. Although we refer to dynamics in (bio)chemical networks at thermal equilibrium or under nonequilibrium steady-state conditions, the results are valid for any Markov jump process under the same assumptions.
Collapse
Affiliation(s)
- Diego Frezzato
- Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova, Italy
| |
Collapse
|
9
|
Pietzonka P, Coghi F. Thermodynamic cost for precision of general counting observables. Phys Rev E 2024; 109:064128. [PMID: 39020906 DOI: 10.1103/physreve.109.064128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/13/2024] [Indexed: 07/20/2024]
Abstract
We analytically derive universal bounds that describe the tradeoff between thermodynamic cost and precision in a sequence of events related to some internal changes of an otherwise hidden physical system. The precision is quantified by the fluctuations in either the number of events counted over time or the waiting times between successive events. Our results are valid for the same broad class of nonequilibrium driven systems considered by the thermodynamic uncertainty relation, but they extend to both time-symmetric and asymmetric observables. We show how optimal precision saturating the bounds can be achieved. For waiting-time fluctuations of asymmetric observables, a phase transition in the optimal configuration arises, where higher precision can be achieved by combining several signals.
Collapse
|
10
|
Farina D, Benazout B, Centrone F, Acín A. Thermodynamic precision in the nonequilibrium exchange scenario. Phys Rev E 2024; 109:034112. [PMID: 38632747 DOI: 10.1103/physreve.109.034112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/22/2024] [Indexed: 04/19/2024]
Abstract
We discuss exchange scenario thermodynamic uncertainty relations for the work done on a two-qubit entangled nonequilibrium steady state obtained by coupling the two qubits and putting each of them in weak contact with a thermal bath. In this way we investigate the use of entangled nonequilibrium steady states as end points of thermodynamic cycles. In this framework we prove analytically that for a paradigmatic unitary it is possible to construct an exchange scenario thermodynamic uncertainty relation. However, despite holding in many cases, we also show that such a relation ceases to be valid when considering other suitable unitary quenches. Furthermore, this paradigmatic example allows us to shed light on the role of the entanglement between the two qubits for precise work absorption. By considering the projection of the entangled steady state onto the set of separable states, we provide examples where such projection implies an increase of the relative uncertainty, showing the usefulness of entanglement.
Collapse
Affiliation(s)
- Donato Farina
- ICFO, Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Castelldefels (Barcelona) 08860, Spain
- Physics Department E. Pancini, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Naples, Italy
| | - Bilal Benazout
- ICFO, Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Castelldefels (Barcelona) 08860, Spain
- Physics Department, Ecole Normale Supérieure, Université PSL, 24 rue Lhomond 75005 Paris, France
| | - Federico Centrone
- ICFO, Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Castelldefels (Barcelona) 08860, Spain
| | - Antonio Acín
- ICFO, Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Castelldefels (Barcelona) 08860, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Delvenne JC, Falasco G. Thermokinetic relations. Phys Rev E 2024; 109:014109. [PMID: 38366524 DOI: 10.1103/physreve.109.014109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/30/2023] [Indexed: 02/18/2024]
Abstract
Thermokinetic relations bound thermodynamic quantities, such as entropy production of a physical system over a certain time interval, with statistics of kinetic (or dynamical) observables, such as mean total variation of the observable over the time interval. We introduce a thermokinetic relation to bound the entropy production or the nonadiabatic (or excess) entropy production for overdamped Markov jump processes, possibly with time-varying rates and nonstationary distributions. For stationary cases, this bound is akin to a thermodynamic uncertainty relation, only involving absolute fluctuations rather than the mean square, thereby offering a better lower bound far from equilibrium. For nonstationary cases, this bound generalizes (classical) speed limits, where the kinetic term is not necessarily the activity (number of jumps) but any trajectory observable of interest. As a consequence, in the task of driving a system from a given probability distribution to another, we find a tradeoff between nonadiabatic entropy production and housekeeping entropy production: the latter can be increased to decrease the former, although to a limited extent. We also find constraints specific to constant-rate Markov processes. We illustrate our thermokinetic relations on simple examples from biophysics and computing devices.
Collapse
Affiliation(s)
- Jean-Charles Delvenne
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, 1348 Louvain-La-Neuve, Belgium
| | - Gianmaria Falasco
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy
| |
Collapse
|
12
|
Iyori T, Izumida Y. Persistence time bound for subdiffusion based on multidimensional thermodynamic uncertainty relation: Application to an analytically solvable model. Phys Rev E 2024; 109:014138. [PMID: 38366453 DOI: 10.1103/physreve.109.014138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
The thermodynamic uncertainty relation (TUR) is an inequality showing the tradeoff relationship between the relative fluctuation of current observables and thermodynamic costs. It is one of the most important results of stochastic thermodynamics. There are various applications for TUR, one of which is the recent finding of thermodynamic constraints on the time window in which anomalous diffusion of Brownian particles can occur, including subdiffusion and superdiffusion, which are slower and faster than normal diffusion, respectively. These constraints are quite nontrivial because they are not generally derived from the asymptotic normal-diffusive behavior of the anomalous diffusion itself. In this study, we applied multidimensional TUR to the subdiffusion of Brownian particles obeying multivariate Langevin dynamics with a translationally invariant Hamiltonian in equilibrium. Multidimensional TUR is an improved TUR that includes information on another observable in addition to the one currently being considered. The use of an additional observable yields tighter bounds on the current fluctuation than those obtained using TUR. As an example, we demonstrated our theory using the one-dimensional Rouse model, which is known as a simple and analytically tractable model of polymer chains. We demonstrated that we improved the bounds for the persistence time of subdiffusion of the Rouse model, which became tighter as a more correlated observable with the current was used.
Collapse
Affiliation(s)
- Tasuku Iyori
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Yuki Izumida
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| |
Collapse
|
13
|
Bakewell-Smith G, Girotti F, Guţă M, Garrahan JP. General Upper Bounds on Fluctuations of Trajectory Observables. PHYSICAL REVIEW LETTERS 2023; 131:197101. [PMID: 38000415 DOI: 10.1103/physrevlett.131.197101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/21/2023] [Indexed: 11/26/2023]
Abstract
Thermodynamic uncertainty relations (TURs) are general lower bounds on the size of fluctuations of dynamical observables. They have important consequences, one being that the precision of estimation of a current is limited by the amount of entropy production. Here, we prove the existence of general upper bounds on the size of fluctuations of any linear combination of fluxes (including all time-integrated currents or dynamical activities) for continuous-time Markov chains. We obtain these general relations by means of concentration bound techniques. These "inverse TURs" are valid for all times and not only in the long time limit. We illustrate our analytical results with a simple model, and discuss wider implications of these new relations.
Collapse
Affiliation(s)
- George Bakewell-Smith
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Federico Girotti
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Department of Mathematics, Polytechnic University of Milan, Milan, Piazza Leonardo da Vinci 32, 20133, Italy
| | - Mădălin Guţă
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Juan P Garrahan
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
14
|
Ray KJ, Boyd AB, Guarnieri G, Crutchfield JP. Thermodynamic uncertainty theorem. Phys Rev E 2023; 108:054126. [PMID: 38115447 DOI: 10.1103/physreve.108.054126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/11/2023] [Indexed: 12/21/2023]
Abstract
Thermodynamic uncertainty relations (TURs) express a fundamental lower bound on the precision (inverse scaled variance) of any thermodynamic charge-e.g., work or heat-by functionals of the average entropy production. Relying on purely variational arguments, we significantly extend TUR inequalities by incorporating and analyzing the impact of higher statistical cumulants of the entropy production itself within the general framework of time-symmetrically-controlled computation. We derive an exact expression for the charge that achieves the minimum scaled variance, for which the TUR bound tightens to an equality that we name the thermodynamic uncertainty theorem (TUT). Importantly, both the minimum scaled variance charge and the TUT are functionals of the stochastic entropy production, thus retaining the impact of its higher moments. In particular, our results show that, beyond the average, the entropy production distribution's higher moments have a significant effect on any charge's precision. This is made explicit via a thorough numerical analysis of "swap" and "reset" computations that quantitatively compares the TUT against previous generalized TURs.
Collapse
Affiliation(s)
- Kyle J Ray
- Complexity Sciences Center and Department of Physics and Astronomy, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Alexander B Boyd
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
- School of Physics, Trinity College Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - Giacomo Guarnieri
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
| | - James P Crutchfield
- Complexity Sciences Center and Department of Physics and Astronomy, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
15
|
Monnai T. Arbitrary-time thermodynamic uncertainty relation from fluctuation theorem. Phys Rev E 2023; 108:024119. [PMID: 37723688 DOI: 10.1103/physreve.108.024119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/13/2023] [Indexed: 09/20/2023]
Abstract
The thermodynamic uncertainty relation (TUR) provides a universal entropic bound for the precision of the fluctuation of the charge transfer, for example, for a class of continuous-time stochastic processes. However, its extension to general nonequilibrium dynamics is still an unsolved problem. We derive TUR for an arbitrary finite time from exchange fluctuation theorem under a geometric necessary and sufficient condition. We also generally show a necessary and sufficient condition of multidimensional TUR in a unified manner. As a nontrivial practical consequence, we obtain universal scaling relations among the mean and variance of the charge transfer in short time regime. In this manner, we can deepen our understanding of a link between two important rigorous relations, i.e., the fluctuation theorem and the thermodynamic uncertainty relation.
Collapse
Affiliation(s)
- Takaaki Monnai
- Department of Science and Technology, Seikei University, Tokyo 180-8633, Japan
| |
Collapse
|
16
|
Tasnim F, Wolpert DH. Stochastic Thermodynamics of Multiple Co-Evolving Systems-Beyond Multipartite Processes. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1078. [PMID: 37510025 PMCID: PMC10378096 DOI: 10.3390/e25071078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Many dynamical systems consist of multiple, co-evolving subsystems (i.e., they have multiple degrees of freedom). Often, the dynamics of one or more of these subsystems will not directly depend on the state of some other subsystems, resulting in a network of dependencies governing the dynamics. How does this dependency network affect the full system's thermodynamics? Prior studies on the stochastic thermodynamics of multipartite processes have addressed this question by assuming that, in addition to the constraints of the dependency network, only one subsystem is allowed to change state at a time. However, in many real systems, such as chemical reaction networks or electronic circuits, multiple subsystems can-or must-change state together. Here, we investigate the thermodynamics of such composite processes, in which multiple subsystems are allowed to change state simultaneously. We first present new, strictly positive lower bounds on entropy production in composite processes. We then present thermodynamic uncertainty relations for information flows in composite processes. We end with strengthened speed limits for composite processes.
Collapse
Affiliation(s)
- Farita Tasnim
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David H Wolpert
- Santa Fe Institute, Santa Fe, NM 87501, USA
- Complexity Science Hub, Josefstadter Straße 39, 1080 Vienna, Austria
- Center for Bio-Social Complex Systems, Arizona State University, Tempe, AZ 85287, USA
- International Center for Theoretical Physics, 34151 Trieste, Italy
| |
Collapse
|
17
|
Das A, Mahunta S, Agarwalla BK, Mukherjee V. Precision bound and optimal control in periodically modulated continuous quantum thermal machines. Phys Rev E 2023; 108:014137. [PMID: 37583225 DOI: 10.1103/physreve.108.014137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
We use Floquet formalism to study fluctuations in periodically modulated continuous quantum thermal machines. We present a generic theory for such machines, followed by specific examples of sinusoidal, optimal, and circular modulations, respectively. The thermodynamic uncertainty relations (TUR) hold for all modulations considered. Interestingly, in the case of sinusoidal modulation, the TUR ratio assumes a minimum at the heat engine to refrigerator transition point, while the chopped random basis optimization protocol allows us to keep the ratio small for a wide range of modulation frequencies. Furthermore, our numerical analysis suggests that TUR can show signatures of heat engine to refrigerator transition, for more generic modulation schemes. We also study bounds in fluctuations in the efficiencies of such machines; our results indicate that fluctuations in efficiencies are bounded from above for a refrigerator and from below for an engine. Overall, this study emphasizes the crucial role played by different modulation schemes in designing practical quantum thermal machines.
Collapse
Affiliation(s)
- Arpan Das
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland
| | - Shishira Mahunta
- Department of Physical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur 760010, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research Pune, Pune 411008, India
| | - Victor Mukherjee
- Department of Physical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur 760010, India
| |
Collapse
|
18
|
Frezzato D. Upper bounding the average residence times in partially observed steady-state Markov jump processes. Phys Rev E 2023; 107:044126. [PMID: 37198779 DOI: 10.1103/physreve.107.044126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/19/2023]
Abstract
Several types of stochastic dynamics can be modeled as a continuous-time Markov jump process among a finite number of sites. Within such framework, we face the problem of getting an upper bound on the average residence time of the system in a given site β (i.e., the average lifetime of the site) if what we can observe is only the permanence of the system in an adjacent site α and the occurrence of the transitions α→β. Supposing to have a long time record of this partial monitoring of the network under steady-state conditions, we show that an upper bound on the average time spent in the unobserved site can indeed be given. The bound is formally proved, tested by means of simulations, and illustrated for a multicyclic enzymatic reaction scheme.
Collapse
Affiliation(s)
- Diego Frezzato
- Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova, Italy
| |
Collapse
|
19
|
Bettmann LP, Kewming MJ, Goold J. Thermodynamics of a continuously monitored double-quantum-dot heat engine in the repeated interactions framework. Phys Rev E 2023; 107:044102. [PMID: 37198837 DOI: 10.1103/physreve.107.044102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/14/2023] [Indexed: 05/19/2023]
Abstract
Understanding the thermodynamic role of measurement in quantum mechanical systems is a burgeoning field of study. In this article, we study a double quantum dot (DQD) connected to two macroscopic fermionic thermal reservoirs. We assume that the DQD is continuously monitored by a quantum point contact (QPC), which serves as a charge detector. Starting from a minimalist microscopic model for the QPC and reservoirs, we show that the local master equation of the DQD can alternatively be derived in the framework of repeated interactions and that this framework guarantees a thermodynamically consistent description of the DQD and its environment (including the QPC). We analyze the effect of the measurement strength and identify a regime in which particle transport through the DQD is both assisted and stabilized by dephasing. We also find that in this regime the entropic cost of driving the particle current with fixed relative fluctuations through the DQD is reduced. We thus conclude that under continuous measurement a more constant particle current may be achieved at a fixed entropic cost.
Collapse
Affiliation(s)
| | - Michael J Kewming
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - John Goold
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
20
|
Dieball C, Godec A. Direct Route to Thermodynamic Uncertainty Relations and Their Saturation. PHYSICAL REVIEW LETTERS 2023; 130:087101. [PMID: 36898097 DOI: 10.1103/physrevlett.130.087101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Thermodynamic uncertainty relations (TURs) bound the dissipation in nonequilibrium systems from below by fluctuations of an observed current. Contrasting the elaborate techniques employed in existing proofs, we here prove TURs directly from the Langevin equation. This establishes the TUR as an inherent property of overdamped stochastic equations of motion. In addition, we extend the transient TUR to currents and densities with explicit time dependence. By including current-density correlations we, moreover, derive a new sharpened TUR for transient dynamics. Our arguably simplest and most direct proof, together with the new generalizations, allows us to systematically determine conditions under which the different TURs saturate and thus allows for a more accurate thermodynamic inference. Finally, we outline the direct proof also for Markov jump dynamics.
Collapse
Affiliation(s)
- Cai Dieball
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
| |
Collapse
|
21
|
Bao R, Hou Z. Improving estimation of entropy production rate for run-and-tumble particle systems by high-order thermodynamic uncertainty relation. Phys Rev E 2023; 107:024112. [PMID: 36932577 DOI: 10.1103/physreve.107.024112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Entropy production plays an important role in the regulation and stability of active matter systems, and its rate quantifies the nonequilibrium nature of these systems. However, entropy production is hard to experimentally estimate even in some simple active systems like molecular motors or bacteria, which may be modeled by the run-and-tumble particle (RTP), a representative model in the study of active matters. Here we resolve this problem for an asymmetric RTP in one dimension, first constructing a finite-time thermodynamic uncertainty relation (TUR) for a RTP, which works well in the short observation time regime for entropy production estimation. Nevertheless, when the activity dominates, i.e., the RTP is far from equilibrium, the lower bound for entropy production from TUR turns out to be trivial. We address this issue by introducing a recently proposed high-order thermodynamic uncertainty relation (HTUR), in which the cumulant generating function of current serves as a key ingredient. To exploit the HTUR, we adopt a method to analytically obtain the cumulant generating function of the current we study, with no need to explicitly know the time-dependent probability distribution. The HTUR is demonstrated to be able to estimate the steady state energy dissipation rate accurately because the cumulant generating function covers higher-order statistics of the current, including rare and large fluctuations besides its variance. Compared to the conventional TUR, the HTUR could give significantly improved estimation of energy dissipation, which can work well even in the far from equilibrium regime. We also provide a strategy based on the improved bound to estimate the entropy production from a moderate amount of trajectory data for experimental feasibility.
Collapse
Affiliation(s)
- Ruicheng Bao
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
22
|
Frezzato D. Probability inequalities for direct and inverse dynamical outputs in driven fluctuating systems. Phys Rev E 2023; 107:014112. [PMID: 36797874 DOI: 10.1103/physreve.107.014112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
When a fluctuating system is subjected to a time-dependent drive or nonconservative forces, the direct-inverse symmetry of the dynamics can be broken so inducing an average bias. Here we start from the fluctuation theorem, a cornerstone of stochastic thermodynamics, for inspecting the unbalancing between direct and inverse dynamical outputs, here called "events," in a bidirectional forward-backward setup. The occurrence of an event might correspond to the realization of a quantitative output, or to the realization of a sequence of acts that compose a complex "narrative." The focus is on mutual bounds between the probabilities of occurrence of direct and inverse events in the forward and backward mode. The inspection is made for systems in contact with a thermal bath, and by assuming Markov dynamics on the uncontrolled degrees of freedom. The approach comprises both the case of systems under a time-dependent drive and time-independent external forces. The general formulation is then used to derive (or re-derive) specialized results valid for finite-time processes, and for systems taken into steady conditions (either periodic steady states or steady states) starting from equilibrium. Among the results, we find already known forms of "generalized" thermodynamic uncertainty relations, and derive useful constraints concerning the work distribution function for systems in steady conditions.
Collapse
Affiliation(s)
- Diego Frezzato
- Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova, Italy
| |
Collapse
|
23
|
Polettini M, Falasco G, Esposito M. Tight uncertainty relations for cycle currents. Phys Rev E 2022; 106:064121. [PMID: 36671076 DOI: 10.1103/physreve.106.064121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Several recent inequalities bound the precision of a current, i.e., a counter of the net number of transitions in a system, by a thermodynamic measure of dissipation. However, while currents may be defined locally, dissipation is a global property. Inspired by the fact that, ever since Carnot, cycles are the unit elements of thermodynamic processes, we prove similar bounds tailored to cycle currents, counting net cycle completions, in terms of their conjugate affinities. We show that these inequalities are stricter than previous ones, even far from equilibrium, and that they allow us to tighten those on transition currents. We illustrate our results with a simple model and discuss some technical and conceptual issues related to shifting attention from transition to cycle observables.
Collapse
Affiliation(s)
- Matteo Polettini
- Department of Physics and Materials Science, University of Luxembourg, Campus Limpertsberg, 162a Avenue de la Faïencerie, 1511 Luxembourg, Grand Duchy of Luxembourg
| | - Gianmaria Falasco
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, Campus Limpertsberg, 162a Avenue de la Faïencerie, 1511 Luxembourg, Grand Duchy of Luxembourg
| |
Collapse
|
24
|
Ro S, Guo B, Shih A, Phan TV, Austin RH, Levine D, Chaikin PM, Martiniani S. Model-Free Measurement of Local Entropy Production and Extractable Work in Active Matter. PHYSICAL REVIEW LETTERS 2022; 129:220601. [PMID: 36493452 DOI: 10.1103/physrevlett.129.220601] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/09/2022] [Indexed: 06/17/2023]
Abstract
Time-reversal symmetry breaking and entropy production are universal features of nonequilibrium phenomena. Despite its importance in the physics of active and living systems, the entropy production of systems with many degrees of freedom has remained of little practical significance because the high dimensionality of their state space makes it difficult to measure. Here we introduce a local measure of entropy production and a numerical protocol to estimate it. We establish a connection between the entropy production and extractability of work in a given region of the system and show how this quantity depends crucially on the degrees of freedom being tracked. We validate our approach in theory, simulation, and experiments by considering systems of active Brownian particles undergoing motility-induced phase separation, as well as active Brownian particles and E.coli in a rectifying device in which the time-reversal asymmetry of the particle dynamics couples to spatial asymmetry to reveal its effects on a macroscopic scale.
Collapse
Affiliation(s)
- Sunghan Ro
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Buming Guo
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
| | - Aaron Shih
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York 10003, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Trung V Phan
- Department of Physics, Princeton University, Princeton 08544, New Jersey, USA
| | - Robert H Austin
- Department of Physics, Princeton University, Princeton 08544, New Jersey, USA
| | - Dov Levine
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Paul M Chaikin
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
| | - Stefano Martiniani
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York 10003, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Simons Center for Computational Physical Chemistry, Department of Chemistry, New York University, New York 10003, USA
| |
Collapse
|
25
|
Koyuk T, Seifert U. Thermodynamic Uncertainty Relation in Interacting Many-Body Systems. PHYSICAL REVIEW LETTERS 2022; 129:210603. [PMID: 36461951 DOI: 10.1103/physrevlett.129.210603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/01/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
The thermodynamic uncertainty relation (TUR) has been well studied for systems with few degrees of freedom. While, in principle, the TUR holds for more complex systems with many interacting degrees of freedom as well, little is known so far about its behavior in such systems. We analyze the TUR in the thermodynamic limit for mixtures of driven particles with short-range interactions. Our main result is an explicit expression for the optimal estimate of the total entropy production in terms of single-particle currents and correlations between two-particle currents. Quantitative results for various versions of a driven lattice gas demonstrate the practical implementation of this approach.
Collapse
Affiliation(s)
- Timur Koyuk
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
26
|
Ptaszyński K. Bounds on skewness and kurtosis of steady-state currents. Phys Rev E 2022; 106:024119. [PMID: 36109909 DOI: 10.1103/physreve.106.024119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Current fluctuations are a powerful tool to unravel the underlying physics of the observed transport process. This work discusses some general properties of the third and the fourth current cumulant (skewness and kurtosis) related to dynamics and thermodynamics of a transport setup. Specifically, several distinct bounds on these quantities are either analytically derived or numerically conjectured, which are applicable to (1) noninteracting fermionic systems, (2) noninteracting bosonic systems, (3) thermally driven classical Markovian systems, and (4) unicyclic Markovian networks. Finally, it is demonstrated that violation of the obtained inequalities can provide a broad spectrum of information about the physics of the analyzed system; e.g., it can enable one to infer the presence of interactions or unitary dynamics, unravel the topology of the Markovian network, or characterize the nature of thermodynamic forces driving the system. In particular, relevant information about the microscopic dynamics can be gained even at equilibrium when the current variance-a standard measure of current fluctuations-is determined mostly by the thermal noise.
Collapse
Affiliation(s)
- Krzysztof Ptaszyński
- Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|
27
|
Fu RS, Gingrich TR. Thermodynamic uncertainty relation for Langevin dynamics by scaling time. Phys Rev E 2022; 106:024128. [PMID: 36109964 DOI: 10.1103/physreve.106.024128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The thermodynamic uncertainty relation (TUR) quantifies a relationship between current fluctuations and dissipation in out-of-equilibrium overdamped Langevin dynamics, making it a natural counterpart of the fluctuation-dissipation theorem in equilibrium statistical mechanics. For underdamped Langevin dynamics, the situation is known to be more complicated with dynamical activity also playing a role in limiting the magnitude of current fluctuations. Progress on those underdamped TUR-like bounds has largely come from applications of the information-theoretic Cramér-Rao inequality. Here, we present an alternative perspective by employing large deviation theory. The approach offers a general unified treatment of TUR-like bounds for both overdamped and underdamped Langevin dynamics built upon current fluctuations achieved by scaling time. The bounds we derive following this approach are similar to known results but with differences we discuss and rationalize.
Collapse
Affiliation(s)
- Rueih-Sheng Fu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Todd R Gingrich
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
28
|
Wolpert DH. Strengthened second law for multi-dimensional systems coupled to multiple thermodynamic reservoirs. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200428. [PMID: 35599569 PMCID: PMC9125225 DOI: 10.1098/rsta.2020.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The second law of thermodynamics can be formulated as a restriction on the evolution of the entropy of any system undergoing Markovian dynamics. Here I show that this form of the second law is strengthened for multi-dimensional, complex systems, coupled to multiple thermodynamic reservoirs, if we have a set of a priori constraints restricting how the dynamics of each coordinate can depend on the other coordinates. As an example, this strengthened second law (SSL) applies to complex systems composed of multiple physically separated, co-evolving subsystems, each identified as a coordinate of the overall system. In this example, the constraints concern how the dynamics of some subsystems are allowed to depend on the states of the other subsystems. Importantly, the SSL applies to such complex systems even if some of its subsystems can change state simultaneously, which is prohibited in a multipartite process. The SSL also strengthens previously derived bounds on how much work can be extracted from a system using feedback control, if the system is multi-dimensional. Importantly, the SSL does not require local detailed balance. So it potentially applies to complex systems ranging from interacting economic agents to co-evolving biological species. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- David H. Wolpert
- Santa Fe Institute, Santa Fe, NM, USA
- Complexity Science Hub, Vienna, Arizona State University, Tempe, AZ, USA
- International Center for Theoretical Physics, Italy
| |
Collapse
|
29
|
Wolpert DH. Strengthened second law for multi-dimensional systems coupled to multiple thermodynamic reservoirs. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022. [PMID: 35599569 DOI: 10.6084/m9.figshare.c.5896494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The second law of thermodynamics can be formulated as a restriction on the evolution of the entropy of any system undergoing Markovian dynamics. Here I show that this form of the second law is strengthened for multi-dimensional, complex systems, coupled to multiple thermodynamic reservoirs, if we have a set of a priori constraints restricting how the dynamics of each coordinate can depend on the other coordinates. As an example, this strengthened second law (SSL) applies to complex systems composed of multiple physically separated, co-evolving subsystems, each identified as a coordinate of the overall system. In this example, the constraints concern how the dynamics of some subsystems are allowed to depend on the states of the other subsystems. Importantly, the SSL applies to such complex systems even if some of its subsystems can change state simultaneously, which is prohibited in a multipartite process. The SSL also strengthens previously derived bounds on how much work can be extracted from a system using feedback control, if the system is multi-dimensional. Importantly, the SSL does not require local detailed balance. So it potentially applies to complex systems ranging from interacting economic agents to co-evolving biological species. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- David H Wolpert
- Santa Fe Institute, Santa Fe, NM, USA
- Complexity Science Hub, Vienna, Arizona State University, Tempe, AZ, USA
- International Center for Theoretical Physics, Italy
| |
Collapse
|
30
|
Oberreiter L, Seifert U, Barato AC. Universal minimal cost of coherent biochemical oscillations. Phys Rev E 2022; 106:014106. [PMID: 35974563 DOI: 10.1103/physreve.106.014106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Biochemical clocks are essential for virtually all living systems. A biochemical clock that is isolated from an external periodic signal and subjected to fluctuations can oscillate coherently only for a finite number of oscillations. Furthermore, such an autonomous clock can oscillate only if it consumes free energy. What is the minimum amount of free-energy consumption required for a certain number of coherent oscillations? We conjecture a universal bound that answers this question. A system that oscillates coherently for N oscillations has a minimal free-energy cost per oscillation of 4π^{2}Nk_{B}T. Our bound is valid for general finite Markov processes, is conjectured based on extensive numerical evidence, is illustrated with numerical simulations of a known model for a biochemical oscillator, and applies to existing experimental data.
Collapse
Affiliation(s)
- Lukas Oberreiter
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Andre C Barato
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
31
|
Verification of Information Thermodynamics in a Trapped Ion System. ENTROPY 2022; 24:e24060813. [PMID: 35741534 PMCID: PMC9222944 DOI: 10.3390/e24060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Information thermodynamics has developed rapidly over past years, and the trapped ions, as a controllable quantum system, have demonstrated feasibility to experimentally verify the theoretical predictions in the information thermodynamics. Here, we address some representative theories of information thermodynamics, such as the quantum Landauer principle, information equality based on the two-point measurement, information-theoretical bound of irreversibility, and speed limit restrained by the entropy production of system, and review their experimental demonstration in the trapped ion system. In these schemes, the typical physical processes, such as the entropy flow, energy transfer, and information flow, build the connection between thermodynamic processes and information variation. We then elucidate the concrete quantum control strategies to simulate these processes by using quantum operators and the decay paths in the trapped-ion system. Based on them, some significantly dynamical processes in the trapped ion system to realize the newly proposed information-thermodynamic models is reviewed. Although only some latest experimental results of information thermodynamics with a single trapped-ion quantum system are reviewed here, we expect to find more exploration in the future with more ions involved in the experimental systems.
Collapse
|
32
|
Van Vu T, Saito K. Thermodynamics of Precision in Markovian Open Quantum Dynamics. PHYSICAL REVIEW LETTERS 2022; 128:140602. [PMID: 35476476 DOI: 10.1103/physrevlett.128.140602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The thermodynamic and kinetic uncertainty relations indicate trade-offs between the relative fluctuation of observables and thermodynamic quantities such as dissipation and dynamical activity. Although these relations have been well studied for classical systems, they remain largely unexplored in the quantum regime. In this Letter, we investigate such trade-off relations for Markovian open quantum systems whose underlying dynamics are quantum jumps, such as thermal processes and quantum measurement processes. Specifically, we derive finite-time lower bounds on the relative fluctuation of both dynamical observables and their first passage times for arbitrary initial states. The bounds imply that the precision of observables is constrained not only by thermodynamic quantities but also by quantum coherence. We find that the product of the relative fluctuation and entropy production or dynamical activity is enhanced by quantum coherence in a generic class of dissipative processes of systems with nondegenerate energy levels. Our findings provide insights into the survival of the classical uncertainty relations in quantum cases.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
33
|
Pietzonka P. Classical Pendulum Clocks Break the Thermodynamic Uncertainty Relation. PHYSICAL REVIEW LETTERS 2022; 128:130606. [PMID: 35426718 DOI: 10.1103/physrevlett.128.130606] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The thermodynamic uncertainty relation expresses a seemingly universal trade-off between the cost for driving an autonomous system and precision in any output observable. It has so far been proven for discrete systems and for overdamped Brownian motion. Its validity for the more general class of underdamped Brownian motion, where inertia is relevant, was conjectured based on numerical evidence. We now disprove this conjecture by constructing a counterexample. Its design is inspired by a classical pendulum clock, which uses an escapement to couple the motion of an oscillator to regulate the motion of another degree of freedom (a "hand") driven by an external force. Considering a thermodynamically consistent, discrete model for an escapement mechanism, we first show that the oscillations of an underdamped harmonic oscillator in thermal equilibrium are sufficient to break the thermodynamic uncertainty relation. We then show that this is also the case in simulations of a fully continuous underdamped system with a potential landscape that mimics an escaped pendulum.
Collapse
Affiliation(s)
- Patrick Pietzonka
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|
34
|
Hasegawa Y. Thermodynamic uncertainty relation for quantum first-passage processes. Phys Rev E 2022; 105:044127. [PMID: 35590682 DOI: 10.1103/physreve.105.044127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
We derive a thermodynamic uncertainty relation for first passage processes in quantum Markov chains. We consider first passage processes that stop after a fixed number of jump events, which contrasts with typical quantum Markov chains which end at a fixed time. We obtain bounds for the observables of the first passage processes in quantum Markov chains by the Loschmidt echo, which quantifies the extent of irreversibility in quantum many-body systems. Considering a particular case, we show that the lower bound corresponds to the quantum Fisher information, which plays a fundamental role in uncertainty relations in quantum systems. Moreover, considering classical dynamics, our bound reduces to a thermodynamic uncertainty relation for classical first passage processes.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
35
|
Yan LL, Zhang JW, Yun MR, Li JC, Ding GY, Wei JF, Bu JT, Wang B, Chen L, Su SL, Zhou F, Jia Y, Liang EJ, Feng M. Experimental Verification of Dissipation-Time Uncertainty Relation. PHYSICAL REVIEW LETTERS 2022; 128:050603. [PMID: 35179926 DOI: 10.1103/physrevlett.128.050603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Dissipation is vital to any cyclic process in realistic systems. Recent research focus on nonequilibrium processes in stochastic systems has revealed a fundamental trade-off, called dissipation-time uncertainty relation, that entropy production rate associated with dissipation bounds the evolution pace of physical processes [Phys. Rev. Lett. 125, 120604 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.120604]. Following the dissipative two-level model exemplified in the same Letter, we experimentally verify this fundamental trade-off in a single trapped ultracold ^{40}Ca^{+} ion using elaborately designed dissipative channels, along with a postprocessing method developed in the data analysis, to build the effective nonequilibrium stochastic evolutions for the energy transfer between two heat baths mediated by a qubit. Since the dissipation-time uncertainty relation imposes a constraint on the quantum speed regarding entropy flux, our observation provides the first experimental evidence confirming such a speed restriction from thermodynamics on quantum operations due to dissipation, which helps us further understand the role of thermodynamical characteristics played in quantum information processing.
Collapse
Affiliation(s)
- L-L Yan
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - J-W Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| | - M-R Yun
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - J-C Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - G-Y Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - J-F Wei
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - J-T Bu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - B Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - L Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| | - S-L Su
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - F Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| | - Y Jia
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials and Engineering, Henan University, Kaifeng 475001, China
| | - E-J Liang
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - M Feng
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| |
Collapse
|
36
|
Yuan H, Ma YH, Sun CP. Optimizing thermodynamic cycles with two finite-sized reservoirs. Phys Rev E 2022; 105:L022101. [PMID: 35291152 DOI: 10.1103/physreve.105.l022101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
We study the nonequilibrium thermodynamics of a heat engine operating between two finite-sized reservoirs with well-defined temperatures. Within the linear response regime, it is found that the uniform temperature of the two reservoirs at final time τ is bounded from below by the entropy production σ_{min}∝1/τ. We discover a general power-efficiency tradeoff depending on the ratio of heat capacities (γ) of the reservoirs for the engine, and a universal efficiency at maximum average power of the engine for arbitrary γ is obtained. For practical purposes, the operation protocol of an ideal gas heat engine to achieve the optimal performance associated with σ_{min} is demonstrated. Our findings can be used to develop a general optimization scenario for thermodynamic cycles with finite-sized reservoirs in real-world circumstances.
Collapse
Affiliation(s)
- Hong Yuan
- Graduate School of China Academy of Engineering Physics, Number 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Yu-Han Ma
- Graduate School of China Academy of Engineering Physics, Number 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - C P Sun
- Graduate School of China Academy of Engineering Physics, Number 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
37
|
Singh D, Hyeon C. Origin of loose bound of the thermodynamic uncertainty relation in a dissipative two-level quantum system. Phys Rev E 2021; 104:054115. [PMID: 34942793 DOI: 10.1103/physreve.104.054115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 11/07/2022]
Abstract
Thermodynamic uncertainty relations (TURs), originally discovered for classical systems, dictate the tradeoff between dissipation and fluctuations of irreversible current, specifying a minimal bound that constrains the two quantities. In a series of efforts to extend the relation to the one under more generalized conditions, it has been noticed that the bound is less tight in open quantum processes. To study the origin of the loose bounds, we consider an external field-driven transition dynamics of a two-level quantum system weakly coupled to the bosonic bath as a model of an open quantum system. The model makes it explicit that the imaginary part of quantum coherence, which contributes to dissipation to the environment, is responsible for loosening the TUR bound by suppressing the relative fluctuations in the irreversible current of transitions, whereas the real part of the coherence tightens it. Our study offers a better understanding of how quantum nature affects the TUR bound.
Collapse
|
38
|
Lee JS, Park JM, Park H. Universal form of thermodynamic uncertainty relation for Langevin dynamics. Phys Rev E 2021; 104:L052102. [PMID: 34942785 DOI: 10.1103/physreve.104.l052102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/19/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic uncertainty relation (TUR) provides a stricter bound for entropy production (EP) than that of the thermodynamic second law. This stricter bound can be utilized to infer the EP and derive other tradeoff relations. Though the validity of the TUR has been verified in various stochastic systems, its application to general Langevin dynamics has not been successfully unified, especially for underdamped Langevin dynamics, where odd parity variables in time-reversal operation such as velocity get involved. Previous TURs for underdamped Langevin dynamics are neither experimentally accessible nor reduced to the original form of the overdamped Langevin dynamics in the zero-mass limit. Here, we find a TUR for underdamped Langevin dynamics with an arbitrary time-dependent protocol, which is operationally accessible when all mechanical forces are controllable. We show that the original TUR is a consequence of our underdamped TUR in the zero-mass limit. This indicates that the TUR formulation presented here can be regarded as the universal form of the TUR for general Langevin dynamics.
Collapse
Affiliation(s)
- Jae Sung Lee
- School of Physics and Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Jong-Min Park
- School of Physics and Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Hyunggyu Park
- School of Physics and Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
39
|
Hasegawa Y. Irreversibility, Loschmidt Echo, and Thermodynamic Uncertainty Relation. PHYSICAL REVIEW LETTERS 2021; 127:240602. [PMID: 34951787 DOI: 10.1103/physrevlett.127.240602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Entropy production characterizes irreversibility. This viewpoint allows us to consider the thermodynamic uncertainty relation, which states that a higher precision can be achieved at the cost of higher entropy production, as a relation between precision and irreversibility. Considering the original and perturbed dynamics, we show that the precision of an arbitrary counting observable in continuous measurement of quantum Markov processes is bounded from below by the Loschmidt echo between the two dynamics, representing the irreversibility of quantum dynamics. When considering particular perturbed dynamics, our relation leads to several thermodynamic uncertainty relations, indicating that our relation provides a unified perspective on classical and quantum thermodynamic uncertainty relations.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
40
|
Shpielberg O, Pal A. Thermodynamic uncertainty relations for many-body systems with fast jump rates and large occupancies. Phys Rev E 2021; 104:064141. [PMID: 35030838 DOI: 10.1103/physreve.104.064141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
A universal large N theory of nonequilibrium fluctuations emerges in the limit of fast jump rates and large occupancies. We use this theory to derive a set of coarse-grained thermodynamic uncertainty relations-one of them being an activity bound. Importantly, the activity serves as a tighter bound for the entropy production in 1D systems. These results are particularly useful in the many-body regime, where typically a coarse-grained approach is required to handle the large microscopic state space.
Collapse
Affiliation(s)
- Ohad Shpielberg
- Haifa Research Center for Theoretical Physics and Astrophysics, University of Haifa, Mt. Carmel, Haifa 31905, Israel
| | - Arnab Pal
- Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University & Department of Physics, Indian Institute of Technology, Kanpur, Kanpur 208016, India
| |
Collapse
|
41
|
Kamijima T, Otsubo S, Ashida Y, Sagawa T. Higher-order efficiency bound and its application to nonlinear nanothermoelectrics. Phys Rev E 2021; 104:044115. [PMID: 34781477 DOI: 10.1103/physreve.104.044115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/22/2021] [Indexed: 11/07/2022]
Abstract
Power and efficiency of heat engines are two conflicting objectives. A tight efficiency bound is expected to give insights on the fundamental properties of such a power-efficiency tradeoff. Here, we derive an upper bound on the efficiency of steady-state heat engines, which incorporates higher-order fluctuations of power. In a prototypical model of nonlinear nanostructured thermoelectrics, we show that the obtained bound is tighter than a well-established efficiency bound derived from the thermodynamic uncertainty relation, demonstrating that the higher-order terms have rich information about the thermodynamic efficiency in the nonlinear regime. In particular, we find that the higher-order bound is exactly achieved if the tight coupling condition is satisfied. The obtained bound gives a consistent prediction with an observation that nonlinearity enhances the power-efficiency tradeoff, and would also be useful in a variety of nanoscale engines.
Collapse
Affiliation(s)
- Takuya Kamijima
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shun Otsubo
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuto Ashida
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Institute for Physics of Intelligence, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Takahiro Sagawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Quantum-Phase Electronics Center (QPEC), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
42
|
Van Vu T, Hasegawa Y. Lower Bound on Irreversibility in Thermal Relaxation of Open Quantum Systems. PHYSICAL REVIEW LETTERS 2021; 127:190601. [PMID: 34797124 DOI: 10.1103/physrevlett.127.190601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
We consider the thermal relaxation process of a quantum system attached to single or multiple reservoirs. Quantifying the degree of irreversibility by entropy production, we prove that the irreversibility of the thermal relaxation is lower bounded by a relative entropy between the unitarily evolved state and the final state. The bound characterizes the state discrepancy induced by the nonunitary dynamics, and thus reflects the dissipative nature of irreversibility. Intriguingly, the bound can be evaluated solely in terms of the initial and final states and the system Hamiltonian, thereby providing a feasible way to estimate entropy production without prior knowledge of the underlying coupling structure. This finding refines the second law of thermodynamics and reveals a universal feature of thermal relaxation processes.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
43
|
Yoshimura K, Ito S. Thermodynamic Uncertainty Relation and Thermodynamic Speed Limit in Deterministic Chemical Reaction Networks. PHYSICAL REVIEW LETTERS 2021; 127:160601. [PMID: 34723601 DOI: 10.1103/physrevlett.127.160601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
We generalize the thermodynamic uncertainty relation (TUR) and thermodynamic speed limit (TSL) for deterministic chemical reaction networks (CRNs). The scaled diffusion coefficient derived by considering the connection between macro- and mesoscopic CRNs plays an essential role in our results. The TUR shows that the product of the entropy production rate and the ratio of the scaled diffusion coefficient to the square of the rate of concentration change is bounded below by two. The TSL states a trade-off relation between speed and thermodynamic quantities, the entropy production, and the time-averaged scaled diffusion coefficient. The results are proved under the general setting of open and nonideal CRNs.
Collapse
Affiliation(s)
- Kohei Yoshimura
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0031, Japan
| | - Sosuke Ito
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0031, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
44
|
Hartich D, Godec A. Thermodynamic Uncertainty Relation Bounds the Extent of Anomalous Diffusion. PHYSICAL REVIEW LETTERS 2021; 127:080601. [PMID: 34477441 DOI: 10.1103/physrevlett.127.080601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
In a finite system driven out of equilibrium by a constant external force the thermodynamic uncertainty relation (TUR) bounds the variance of the conjugate current variable by the thermodynamic cost of maintaining the nonequilibrium stationary state. Here we highlight a new facet of the TUR by showing that it also bounds the timescale on which a finite system can exhibit anomalous kinetics. In particular, we demonstrate that the TUR bounds subdiffusion in a single file confined to a ring as well as a dragged Gaussian polymer chain even when detailed balance is satisfied. Conversely, the TUR bounds the onset of superdiffusion in the active comb model. Remarkably, the fluctuations in a comb model evolving from a steady state behave anomalously as soon as detailed balance is broken. Our work establishes a link between stochastic thermodynamics and the field of anomalous dynamics that will fertilize further investigations of thermodynamic consistency of anomalous diffusion models.
Collapse
Affiliation(s)
- David Hartich
- Mathematical bioPhysics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Song Y, Hyeon C. Cost-precision trade-off relation determines the optimal morphogen gradient for accurate biological pattern formation. eLife 2021; 10:70034. [PMID: 34402427 PMCID: PMC8457829 DOI: 10.7554/elife.70034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Spatial boundaries formed during animal development originate from the pre-patterning of tissues by signaling molecules, called morphogens. The accuracy of boundary location is limited by the fluctuations of morphogen concentration that thresholds the expression level of target gene. Producing more morphogen molecules, which gives rise to smaller relative fluctuations, would better serve to shape more precise target boundaries; however, it incurs more thermodynamic cost. In the classical diffusion-depletion model of morphogen profile formation, the morphogen molecules synthesized from a local source display an exponentially decaying concentration profile with a characteristic length λ. Our theory suggests that in order to attain a precise profile with the minimal cost, λ should be roughly half the distance to the target boundary position from the source. Remarkably, we find that the profiles of morphogens that pattern the Drosophila embryo and wing imaginal disk are formed with nearly optimal λ. Our finding underscores the cost-effectiveness of precise morphogen profile formation in Drosophila development.
Collapse
Affiliation(s)
- Yonghyun Song
- Korea Institute for Advanced Study, Seoul, Republic of Korea
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul, Republic of Korea
| |
Collapse
|
46
|
Hiura K, Sasa SI. Kinetic uncertainty relation on first-passage time for accumulated current. Phys Rev E 2021; 103:L050103. [PMID: 34134276 DOI: 10.1103/physreve.103.l050103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 11/07/2022]
Abstract
The kinetic uncertainty relation (KUR) is a trade-off relation between the precision of an observable and the mean dynamical activity in a fixed time interval for a time-homogeneous and continuous-time Markov chain. In this Letter, we derive the KUR on the first passage time for the time-integrated current from the information inequality at stopping times. The relation shows that the precision of the first passage time is bounded from above by the mean number of jumps up to that time. We apply our result to simple systems and demonstrate that the activity constraint gives a tighter bound than the thermodynamic uncertainty relation in the regime far from equilibrium.
Collapse
Affiliation(s)
- Ken Hiura
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Shin-Ichi Sasa
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
47
|
Falasco G, Esposito M. Local detailed balance across scales: From diffusions to jump processes and beyond. Phys Rev E 2021; 103:042114. [PMID: 34005954 DOI: 10.1103/physreve.103.042114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/03/2021] [Indexed: 11/07/2022]
Abstract
Diffusive dynamics in presence of deep energy minima and weak nongradient forces can be coarse grained into a mesoscopic jump process over the various basins of attraction. Combining standard weak-noise results with a path integral expansion around equilibrium, we show that the emerging transition rates satisfy local detailed balance (LDB). Namely, the log ratio of the transition rates between nearby basins of attractions equals the free-energy variation appearing at equilibrium, supplemented by the work done by the nonconservative forces along the typical transition path. When the mesoscopic dynamics possesses a large-size deterministic limit, it can be further reduced to a jump process over macroscopic states satisfying LDB. The persistence of LDB under coarse graining of weakly nonequilibrium states is a generic consequence of the fact that only dissipative effects matter close to equilibrium.
Collapse
Affiliation(s)
- Gianmaria Falasco
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg
| |
Collapse
|
48
|
Song Y, Hyeon C. Thermodynamic uncertainty relation to assess biological processes. J Chem Phys 2021; 154:130901. [PMID: 33832251 DOI: 10.1063/5.0043671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We review the trade-offs between speed, fluctuations, and thermodynamic cost involved with biological processes in nonequilibrium states and discuss how optimal these processes are in light of the universal bound set by the thermodynamic uncertainty relation (TUR). The values of the uncertainty product Q of TUR, which can be used as a measure of the precision of enzymatic processes realized for a given thermodynamic cost, are suboptimal when the substrate concentration is at the Michaelis constant, and some of the key biological processes are found to work around this condition. We illustrate the utility of Q in assessing how close the molecular motors and biomass producing machineries are to the TUR bound, and for the cases of biomass production (or biological copying processes), we discuss how their optimality quantified in terms of Q is balanced with the error rate in the information transfer process. We also touch upon the trade-offs in other error-minimizing processes in biology, such as gene regulation and chaperone-assisted protein folding. A spectrum of Q recapitulating the biological processes surveyed here provides glimpses into how biological systems are evolved to optimize and balance the conflicting functional requirements.
Collapse
Affiliation(s)
- Yonghyun Song
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| |
Collapse
|
49
|
Frezzato D. Dissipation-recurrence inequalities at the steady state. Phys Rev E 2021; 103:032112. [PMID: 33862676 DOI: 10.1103/physreve.103.032112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 11/07/2022]
Abstract
For Markov jump processes in out-of-equilibrium steady state, we present inequalities which link the average rate of entropy production with the timing of the site-to-site recurrences. Such inequalities are upper bounds on the average rate of entropy production. The combination with the finite-time thermodynamic uncertainty relation (a lower bound) yields inequalities of the pure kinetic kind for the relative precision of a dynamical output. After having derived the main relations for the discrete case, we sketch the possible extension to overdamped Markov dynamics on continuous degrees of freedom, treating explicitly the case of one-dimensional diffusion in tilted periodic potentials; an upper bound on the average velocity is derived, in terms of the average rate of entropy production and the microscopic diffusion coefficient, which corresponds to the finite-time thermodynamic uncertainty relation in the limit of vanishingly small observation time.
Collapse
Affiliation(s)
- Diego Frezzato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
50
|
Rignon-Bret A, Guarnieri G, Goold J, Mitchison MT. Thermodynamics of precision in quantum nanomachines. Phys Rev E 2021; 103:012133. [PMID: 33601640 DOI: 10.1103/physreve.103.012133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Fluctuations strongly affect the dynamics and functionality of nanoscale thermal machines. Recent developments in stochastic thermodynamics have shown that fluctuations in many far-from-equilibrium systems are constrained by the rate of entropy production via so-called thermodynamic uncertainty relations. These relations imply that increasing the reliability or precision of an engine's power output comes at a greater thermodynamic cost. Here we study the thermodynamics of precision for small thermal machines in the quantum regime. In particular, we derive exact relations between the power, power fluctuations, and entropy production rate for several models of few-qubit engines (both autonomous and cyclic) that perform work on a quantized load. Depending on the context, we find that quantum coherence can either help or hinder where power fluctuations are concerned. We discuss design principles for reducing such fluctuations in quantum nanomachines and propose an autonomous three-qubit engine whose power output for a given entropy production is more reliable than would be allowed by any classical Markovian model.
Collapse
Affiliation(s)
- Antoine Rignon-Bret
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland.,École Normale Supérieure, 45 rue d'Ulm, F-75230 Paris, France
| | - Giacomo Guarnieri
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - John Goold
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Mark T Mitchison
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|