1
|
Sun T, Korolev N, Minhas V, Mirzoev A, Lyubartsev AP, Nordenskiöld L. Multiscale modeling reveals the ion-mediated phase separation of nucleosome core particles. Biophys J 2024; 123:1414-1434. [PMID: 37915169 PMCID: PMC11163297 DOI: 10.1016/j.bpj.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Due to the vast length scale inside the cell nucleus, multiscale models are required to understand chromatin folding, structure, and dynamics and how they regulate genomic activities such as DNA transcription, replication, and repair. We study the interactions and structure of condensed phases formed by the universal building block of chromatin, the nucleosome core particle (NCP), using bottom-up multiscale coarse-grained (CG) simulations with a model extracted from all-atom MD simulations. In the presence of the multivalent cations Mg(H2O)62+ or CoHex3+, we analyze the internal structures of the NCP aggregates and the contributions of histone tails and ions to the aggregation patterns. We then derive a "super" coarse-grained (SCG) NCP model to study the macroscopic scale phase separation of NCPs. The SCG simulations show the formation of NCP aggregates with Mg(H2O)62+ concentration-dependent densities and sizes. Variation of the CoHex3+ concentrations results in highly ordered lamellocolumnar and hexagonal columnar phases in agreement with experimental data. The results give detailed insights into nucleosome interactions and for understanding chromatin folding in the cell nucleus.
Collapse
Affiliation(s)
- Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Vishal Minhas
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Mirzoev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
2
|
Buchholz KR, Reichelt M, Johnson MC, Robinson SJ, Smith PA, Rutherford ST, Quinn JG. Potent activity of polymyxin B is associated with long-lived super-stoichiometric accumulation mediated by weak-affinity binding to lipid A. Nat Commun 2024; 15:4733. [PMID: 38830951 PMCID: PMC11148078 DOI: 10.1038/s41467-024-49200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Polymyxins are gram-negative antibiotics that target lipid A, the conserved membrane anchor of lipopolysaccharide in the outer membrane. Despite their clinical importance, the molecular mechanisms underpinning polymyxin activity remain unresolved. Here, we use surface plasmon resonance to kinetically interrogate interactions between polymyxins and lipid A and derive a phenomenological model. Our analyses suggest a lipid A-catalyzed, three-state mechanism for polymyxins: transient binding, membrane insertion, and super-stoichiometric cluster accumulation with a long residence time. Accumulation also occurs for brevicidine, another lipid A-targeting antibacterial molecule. Lipid A modifications that impart polymyxin resistance and a non-bactericidal polymyxin derivative exhibit binding that does not evolve into long-lived species. We propose that transient binding to lipid A permeabilizes the outer membrane and cluster accumulation enables the bactericidal activity of polymyxins. These findings could establish a blueprint for discovery of lipid A-targeting antibiotics and provide a generalizable approach to study interactions with the gram-negative outer membrane.
Collapse
Affiliation(s)
- Kerry R Buchholz
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, USA.
| | - Mike Reichelt
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Matthew C Johnson
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Sarah J Robinson
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Peter A Smith
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, USA
- Revagenix, Inc., San Mateo, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, USA.
| | - John G Quinn
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
3
|
Saini RS, Binduhayyim RIH, Gurumurthy V, Alshadidi AAF, Aldosari LIN, Okshah A, Kuruniyan MS, Dermawan D, Avetisyan A, Mosaddad SA, Heboyan A. Dental biomaterials redefined: molecular docking and dynamics-driven dental resin composite optimization. BMC Oral Health 2024; 24:557. [PMID: 38735940 PMCID: PMC11089745 DOI: 10.1186/s12903-024-04343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/07/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive properties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biomechanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employing molecular docking and dynamics simulation. METHODS Molecular docking assesses the binding energies and provides valuable insights into the interactions between monomers, fillers, and coupling agents. This investigation prioritizes SiO2 and TRIS, considering their consistent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy minimization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics simulations spanned a duration of 50 ns. RESULTS SiO2 and TRIS consistently emerged as influential components, showcasing their versatility in promoting solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights into the mechanical properties of dental composite complexes. HEMA-SiO2-TRIS excelled in stiffness, BisGMA-SiO2-TRIS prevailed in terms of flexural strength, and EBPADMA-SiO2-TRIS offered a balanced combination of mechanical properties. CONCLUSION These findings provide valuable insights into optimizing dental composites tailored to diverse clinical requirements. While EBPADMA-SiO2-TRIS demonstrates distinct strengths, this study emphasizes the need for further research. Future investigations should validate the computational findings experimentally and assess the material's response to dynamic environmental factors.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | | | | | | | - Abdulmajeed Okshah
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Anna Avetisyan
- Department of Therapeutic Stomatology, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Qasr-E-Dasht Street, Shiraz, Iran.
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, 0025, Yerevan, Armenia.
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, North Karegar St, Tehran, Iran.
| |
Collapse
|
4
|
Abdel Hakiem AF, El-Sagheir AMK, Draz ME, Mohamed NA, Aboraia AS. Assessment of binding interaction to salmon sperm DNA of two antiviral agents and ecofriendly nanoparticles: comprehensive spectroscopic study. BMC Chem 2023; 17:39. [PMID: 37076904 PMCID: PMC10114480 DOI: 10.1186/s13065-023-00952-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
The direct binding of antiviral agents; Daclatasvir and valacyclovir and green synthesized nanoparticles to salmon sperm DNA have been assessed in a comparative study. The nanoparticles were synthesized by the hydrothermal autoclave method and have been fully characterized. The interactive behavior and competitive binding of the analytes to DNA in addition to the thermodynamic properties were deeply investigated by the UV-visible spectroscopy. The binding constants were monitored in the physiological pH conditions to be 1.65 × 106, 4.92 × 105 and 3.12 × 105 for daclatasvir,valacyclovir and quantum dots, respectively. The significant changes in the spectral features of all analytes have proven intercalative binding. The competitive study has confirmed that, daclatasvir, valacyclovir, and the quantum dots have exhibited groove binding. All analytes have shown good entropy and enthalpy values indicating stable interactions. The electrostatic and non-electrostatic kinetic parameters have been determined through studying the binding interactions at different concentrations of KCl solutions. A molecular modelling study has been applied to demonstrate the binding interactions and their mechanisms. The obtained results were complementary and afforded new eras for the therapeutic applications.
Collapse
Affiliation(s)
- Ahmed Faried Abdel Hakiem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt.
| | | | - Mohammed E Draz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Niveen A Mohamed
- Department of Pharmaceutical Chemistry, Unaizah College of Pharmacy, Qassim University, Unaizah, 5888, Saudi Arabia
| | - Ahmed Safwat Aboraia
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
5
|
Thiers KLL, da Silva JHM, Vasconcelos DCA, Aziz S, Noceda C, Arnholdt-Schmitt B, Costa JH. Polymorphisms in alternative oxidase genes from ecotypes of Arabidopsis and rice revealed an environment-induced linkage to altitude and rainfall. PHYSIOLOGIA PLANTARUM 2023; 175:e13847. [PMID: 36562612 DOI: 10.1111/ppl.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
We investigated SNPs in alternative oxidase (AOX) genes and their connection to ecotype origins (climate, altitude, and rainfall) by using genomic data sets of Arabidopsis and rice populations from 1190 and 90 ecotypes, respectively. Parameters were defined to detect non-synonymous SNPs in the AOX ORF, which revealed amino acid (AA) changes in AOX1c, AOX1d, and AOX2 from Arabidopsis and AOX1c from rice in comparison to AOX references from Columbia-0 and Japonica ecotypes, respectively. Among these AA changes, Arabidopsis AOX1c_A161E&G165R and AOX1c_R242S revealed a link to high rainfall and high altitude, respectively, while all other changes in Arabidopsis and rice AOX was connected to high altitude and rainfall. Comparative 3D modeling showed that all mutant AOX presented structural differences in relation to the respective references. Molecular docking analysis uncovered lower binding affinity values between AOX and the substrate ubiquinol for most of the identified structures compared to their reference, indicating better enzyme-substrate binding affinities. Thus, our in silico data suggest that the majority of the AA changes found in the available ecotypes will confer better enzyme-subtract interactions and thus indicate environment-related, more efficient AOX activity.
Collapse
Affiliation(s)
- Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | | | | | - Shahid Aziz
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
- Facultad de Ciencias de la ingeniería, Universidad Estatal de Milagro, Milagro, Ecuador
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| |
Collapse
|
6
|
Roussey NM, Dickson A. Local Ion Densities can Influence Transition Paths of Molecular Binding. Front Mol Biosci 2022; 9:858316. [PMID: 35558558 PMCID: PMC9086317 DOI: 10.3389/fmolb.2022.858316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
Improper reaction coordinates can pose significant problems for path-based binding free energy calculations. Particularly, omission of long timescale motions can lead to over-estimation of the energetic barriers between the bound and unbound states. Many methods exist to construct the optimal reaction coordinate using a pre-defined basis set of features. Although simulations are typically conducted in explicit solvent, the solvent atoms are often excluded by these feature sets—resulting in little being known about their role in reaction coordinates, and ultimately, their role in determining (un)binding rates and free energies. In this work, analysis is done on an extensive set of host-guest unbinding trajectories, working to characterize differences between high and low probability unbinding trajectories with a focus on solvent-based features, including host-ion interactions, guest-ion interactions and location-dependent ion densities. We find that differences in ion densities as well as guest-ion interactions strongly correlate with differences in the probabilities of reactive paths that are used to determine free energies of (un)binding and play a significant role in the unbinding process.
Collapse
Affiliation(s)
- Nicole M. Roussey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Alex Dickson
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, United States
- *Correspondence: Alex Dickson,
| |
Collapse
|
7
|
Erbaş A, Inci F. The Role of Ligand Rebinding and Facilitated Dissociation on the Characterization of Dissociation Rates by Surface Plasmon Resonance (SPR) and Benchmarking Performance Metrics. Methods Mol Biol 2022; 2385:237-253. [PMID: 34888723 DOI: 10.1007/978-1-0716-1767-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface plasmon resonance (SPR) is a real-time kinetic measurement principle that can probe the kinetic interactions between ligands and their binding sites, and lies at the backbone of pharmaceutical, biosensing, and biomolecular research. The extraction of dissociation rates from SPR-response signals often relies on several commonly adopted assumptions, one of which is the exponential decay of the dissociation part of the response signal. However, certain conditions, such as high density of binding sites or high concentration fluctuations near the surface as compared to the bulk, can lead to non-exponential decays via ligand rebinding or facilitated dissociation. Consequently, fitting the data with an exponential function can underestimate or overestimate the measured dissociation rates. Here, we describe a set of alternative fit functions that can take such effects into consideration along with plasmonic sensor design principles with key performance metrics, thereby suggesting methods for error-free high-precision extraction of the dissociation rates.
Collapse
Affiliation(s)
- Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science Nanotechnology, Bilkent University, Ankara, Turkey.
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center and Institute of Materials Science Nanotechnology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
8
|
Erbaş A, Marko JF. How do DNA-bound proteins leave their binding sites? The role of facilitated dissociation. Curr Opin Chem Biol 2019; 53:118-124. [PMID: 31586479 PMCID: PMC6926143 DOI: 10.1016/j.cbpa.2019.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/11/2019] [Accepted: 08/24/2019] [Indexed: 10/25/2022]
Abstract
Dissociation of a protein from DNA is often assumed to be described by an off rate that is independent of other molecules in solution. Recent experiments and computational analyses have challenged this view by showing that unbinding rates (residence times) of DNA-bound proteins can depend on concentrations of nearby molecules that are competing for binding. This 'facilitated dissociation' (FD) process can occur at the single-binding site level via formation of a ternary complex, and can dominate over 'spontaneous dissociation' at low (submicromolar) concentrations. In the crowded intracellular environment FD introduces new regulatory possibilities at the level of individual biomolecule interactions.
Collapse
Affiliation(s)
- Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Dahlke K, Zhao J, Sing CE, Banigan EJ. Force-Dependent Facilitated Dissociation Can Generate Protein-DNA Catch Bonds. Biophys J 2019; 117:1085-1100. [PMID: 31427067 DOI: 10.1016/j.bpj.2019.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular structures are continually subjected to forces, which may serve as mechanical signals for cells through their effects on biomolecule interaction kinetics. Typically, molecular complexes interact via "slip bonds," so applied forces accelerate off rates by reducing transition energy barriers. However, biomolecules with multiple dissociation pathways may have considerably more complicated force dependencies. This is the case for DNA-binding proteins that undergo "facilitated dissociation," in which competitor biomolecules from solution enhance molecular dissociation in a concentration-dependent manner. Using simulations and theory, we develop a generic model that shows that proteins undergoing facilitated dissociation can form an alternative type of molecular bond, known as a "catch bond," for which applied forces suppress protein dissociation. This occurs because the binding by protein competitors responsible for the facilitated dissociation pathway can be inhibited by applied forces. Within the model, we explore how the force dependence of dissociation is regulated by intrinsic factors, including molecular sensitivity to force and binding geometry and the extrinsic factor of competitor protein concentration. We find that catch bonds generically emerge when the force dependence of the facilitated unbinding pathway is stronger than that of the spontaneous unbinding pathway. The sharpness of the transition between slip- and catch-bond kinetics depends on the degree to which the protein bends its DNA substrate. This force-dependent kinetics is broadly regulated by the concentration of competitor biomolecules in solution. Thus, the observed catch bond is mechanistically distinct from other known physiological catch bonds because it requires an extrinsic factor-competitor proteins-rather than a specific intrinsic molecular structure. We hypothesize that this mechanism for regulating force-dependent protein dissociation may be used by cells to modulate protein exchange, regulate transcription, and facilitate diffusive search processes.
Collapse
Affiliation(s)
- Katelyn Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
10
|
Dahal YR, Olvera de la Cruz M. Crystallizing protein assemblies via free and grafted linkers. SOFT MATTER 2019; 15:4311-4319. [PMID: 31070663 DOI: 10.1039/c9sm00693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Porous protein superlattices have plausible catalytic applications in biotechnology and nanotechnology. They are solid yet open structures with the potential for preserving the activity of enzymes. However, there is still a lack of understanding of the design parameters that are required to arrange proteins in a periodic porous fashion. Here, we introduce a coarse-grained molecular dynamics (MD) simulation approach to study the effects of the lengths and geometries of linkers on the stability of 3D crystalline assemblies of metal ion anchored ferritin proteins. By simulating a system of proteins (eight metal ion anchored sites per protein) and linkers (two free ends per linker), we find that there is a range of optimal linker lengths for crystalline order. The optimal linker length is found to depend on the linker to protein concentration ratio and binding energy. We also examine the case of grafted flexible linkers on the protein surface as an alternative route for constructing highly porous crystalline structures. Our study demonstrates that the length of grafted linkers is a better tunable parameter than the length of free linkers to achieve high porosity protein superlattices. The computational study developed here provides guidelines to assemble biomolecules into crystals with high porosity.
Collapse
Affiliation(s)
- Yuba Raj Dahal
- Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
11
|
Erbaş A, Olvera de la Cruz M, Marko JF. Receptor-Ligand Rebinding Kinetics in Confinement. Biophys J 2019; 116:1609-1624. [PMID: 31029377 PMCID: PMC6506716 DOI: 10.1016/j.bpj.2019.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/05/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022] Open
Abstract
Rebinding kinetics of molecular ligands plays a key role in the operation of biomachinery, from regulatory networks to protein transcription, and is also a key factor in design of drugs and high-precision biosensors. In this study, we investigate initial release and rebinding of ligands to their binding sites grafted on a planar surface, a situation commonly observed in single-molecule experiments and that occurs in vivo, e.g., during exocytosis. Via scaling arguments and molecular dynamic simulations, we analyze the dependence of nonequilibrium rebinding kinetics on two intrinsic length scales: the average separation distance between the binding sites and the total diffusible volume (i.e., height of the experimental reservoir in which diffusion takes place or average distance between receptor-bearing surfaces). We obtain time-dependent scaling laws for on rates and for the cumulative number of rebinding events. For diffusion-limited binding, the (rebinding) on rate decreases with time via multiple power-law regimes before the terminal steady-state (constant on-rate) regime. At intermediate times, when particle density has not yet become uniform throughout the diffusible volume, the cumulative number of rebindings exhibits a novel, to our knowledge, plateau behavior because of the three-dimensional escape process of ligands from binding sites. The duration of the plateau regime depends on the average separation distance between binding sites. After the three-dimensional diffusive escape process, a one-dimensional diffusive regime describes on rates. In the reaction-limited scenario, ligands with higher affinity to their binding sites (e.g., longer residence times) delay entry to the power-law regimes. Our results will be useful for extracting hidden timescales in experiments such as kinetic rate measurements for ligand-receptor interactions in microchannels, as well as for cell signaling via diffusing molecules.
Collapse
Affiliation(s)
- Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey.
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois; Department of Physics and Astronomy, Northwestern University, Evanston, Illinois; Department of Chemistry, Northwestern University, Evanston, Illinois
| | - John F Marko
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois; Department of Molecular Biosciences, Northwestern University, Evanston, Illinois.
| |
Collapse
|
12
|
Investigation about validity of the Derjaguin approximation for electrostatic interactions for a sphere-sphere system. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04469-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|