1
|
Oikonomeas-Koppasis N, Ketzetzi S, Kraft DJ, Schall P. Power-law intermittency in the gradient-induced self-propulsion of colloidal swimmers. SOFT MATTER 2024; 20:6103-6108. [PMID: 38868959 PMCID: PMC11305149 DOI: 10.1039/d4sm00603h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
Active colloidal microswimmers serve as archetypical active fluid systems, and as models for biological swimmers. Here, by studying in detail their velocity traces, we find robust power-law intermittency with system-dependent exponential cut off. We model the intermittent motion by an interplay of the field gradient-dependent active force, which depends on a fluid gradient and is reduced when the swimmer moves, and the locally fluctuating hydrodynamic drag, that is set by the wetting properties of the substrate. The model closely describes the velocity distributions of two disparate swimmer systems: AC field activated and catalytic swimmers. The generality is highlighted by the collapse of all data in a single master curve, suggesting the applicability to further systems, both synthetic and biological.
Collapse
Affiliation(s)
- Nick Oikonomeas-Koppasis
- Institute of Physics, University of Amsterdam, Science Park 904, P.O. Box 94485, 1090 GL, Amsterdam, The Netherlands.
| | - Stefania Ketzetzi
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Peter Schall
- Institute of Physics, University of Amsterdam, Science Park 904, P.O. Box 94485, 1090 GL, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Tang ZS, Li JJ, Zhu WJ, Ai BQ. Collective self-optimization of binary mixed heterogeneous populations. Phys Rev E 2024; 109:024405. [PMID: 38491669 DOI: 10.1103/physreve.109.024405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/16/2024] [Indexed: 03/18/2024]
Abstract
To maximize the survival chances of society members, collective self-organization must balance individual interests with promoting the collective welfare. Although situations where group members have equal optimal values are clear, how varying optimal values impacts group dynamics remains unclear. To address this gap, we conducted a self-optimization study of a binary system incorporating communication-enabled active particles with distinct optimal values. We demonstrate that similar particles will spontaneously aggregate and separate from each other to maximize their individual benefits during the process of self-optimization. Our research shows that both types of particles can produce the optimal field values at low density. However, only one type of particle can achieve the optimal field values at medium density. At high densities, neither type of particle is effective in reaching the optimal field values. Interestingly, we observed that during the self-optimization process, the mixture demixed spontaneously under certain circumstances of mixed particles. Particles with higher optimal values developed into larger clusters, while particles with lower optimal values migrated outside of these clusters, resulting in the separation of the mixture. To achieve this separation, suitable noise intensity, particle density, and the significant difference in optimal values were necessary. Our results provide a more profound comprehension of the self-optimization of synthetic or biological agents' communication and provide valuable insight into separating binary species and mixtures.
Collapse
Affiliation(s)
- Zhao-Sha Tang
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Jia-Jian Li
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Wei-Jing Zhu
- School of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Bao-Quan Ai
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
3
|
Wittmann R, Monderkamp PA, Löwen H. Statistics of carrier-cargo complexes. Phys Rev E 2023; 107:064602. [PMID: 37464670 DOI: 10.1103/physreve.107.064602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/17/2023] [Indexed: 07/20/2023]
Abstract
We explore the statistics of assembling soft-matter building blocks to investigate the uptake and encapsulation of cargo particles by carriers engulfing their load. While the such carrier-cargo complexes are important for many applications out of equilibrium, such as drug delivery and synthetic cell encapsulation, we uncover here the basic statistical physics in minimal hard-core-like models for particle uptake. Introducing an exactly solvable equilibrium model in one dimension, we demonstrate that the formation of carrier-cargo complexes can be largely tuned by both the cargo concentration and the carriers' interior size. These findings are intuitively explained by interpreting the internal free space (partition function) of the cargo inside a carrier as its engulfment strength, which can be mapped to an external control parameter (chemical potential) of an additional effective particle species. Assuming a hard carrier membrane, such a mapping can be exactly applied to account for multiple cargo uptake involving various carrier or cargo species and even attractive uptake mechanisms, while soft interactions require certain approximations. We further argue that the Boltzmann occupation law identified within our approach is broken when particle uptake is governed by nonequilibrium forces. Speculating on alternative occupation laws using effective parameters, we put forward a Bose-Einstein-like phase transition associated with polydisperse carrier properties.
Collapse
Affiliation(s)
- René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Paul A Monderkamp
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Gandikota MC, Cacciuto A. Effective forces between active polymers. Phys Rev E 2022; 105:034503. [PMID: 35428068 DOI: 10.1103/physreve.105.034503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The characterization of the interactions between two fully flexible self-avoiding polymers is one of the classic and most important problems in polymer physics. In this paper we measure these interactions in the presence of active fluctuations. We introduce activity into the problem using two of the most popular models in this field, one where activity is effectively embedded into the monomers' dynamics, and the other where passive polymers fluctuate in an explicit bath of active particles. We establish the conditions under which the interaction between active polymers can be mapped into the classical passive problem. We observe that the active bath can drive the development of strong attractive interactions between the polymers and that, upon enforcing a significant degree of overlap, they come together to form a single double-stranded unit. A phase diagram tracing this change in conformational behavior is also reported.
Collapse
Affiliation(s)
- M C Gandikota
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - A Cacciuto
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
5
|
Ai BQ, Guo RX. Large-scale demixing in a binary mixture of cells with rigidity disparity in biological tissues. Phys Rev E 2021; 104:064411. [PMID: 35030891 DOI: 10.1103/physreve.104.064411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Physical demixing on large scales of embryonic cell populations is fundamental to metazoan development, but whether a rigidity disparity alone is sufficient to driving large-scale demixing in a binary mixture of cell tissues is still an open question. To answer this question, we study mixing and demixing in a binary mixture of rigidity disparity cell tissues without heterotypic interactions using the Voronoi-based cellular model. Under suitable system parameters, the solid-like cells in the mixture can aggregate into a large cluster and the large-scale demixing occurs, which addresses that a rigidity disparity alone is sufficient to drive large-scale demixing. Remarkably, there exists an optimal temperature or rigidity disparity at which the binary mixture can be separated to the maximum extent. The necessary condition for the separation of mixtures is that the two types of cells are solid-like and liquid-like, respectively. The observation of robust demixing on large scales suggests that the sorting of progenitor cells may occur very early in the development process before robust heterotypic interfacial tensions are established. Our findings are relevant to understanding the mechanisms that drive cell sorting in confluent tissues.
Collapse
Affiliation(s)
- Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Rui-Xue Guo
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
6
|
Das S, Kennedy N, Cacciuto A. The coil-globule transition in self-avoiding active polymers. SOFT MATTER 2021; 17:160-164. [PMID: 33164018 DOI: 10.1039/d0sm01526a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We perform numerical simulations of an active fully flexible self-avoiding polymer as a function of the quality of the embedding solvent described in terms of an effective monomer-monomer interaction. Specifically, by extracting the Flory exponent of the active polymer under different conditions, we are able to pin down the location of the coil-globule transition for different strengths of the active forces. Remarkably, we find that a simple rescaling of the temperature is capable of qualitatively capturing the dependence of the Θ-point of the polymer on the amplitude of active fluctuations. We discuss the limits of this mapping and suggest that a negative active pressure between the monomers, not unlike the one that has already been found in suspensions of active hard spheres, may also be present in active polymers.
Collapse
Affiliation(s)
- S Das
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA.
| | | | | |
Collapse
|
7
|
Ai BQ, Zhou BY, Zhang XM. Binary mixtures of active and passive particles on a sphere. SOFT MATTER 2020; 16:4710-4717. [PMID: 32367106 DOI: 10.1039/d0sm00281j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the cooperation and segregation dynamics of binary mixtures of active and passive particles on a sphere. According to the competition between rotational diffusion and polar alignment, we find three distinct phases: a mixed phase and two different demixed phases. When rotational diffusion dominates the dynamics, the demixing is due to the aggregation of passive particles, where active and passive particles respectively occupy two hemispheres. When polar alignment is dominated, the demixing is caused by the aggregation of active particles, where active particles occupy the equator of the sphere and passive particles occupy the two poles of the sphere. In this case, there exist a circulating band cluster and two cambered surface clusters, which is a purely curvature-driven effect with no equivalent in the planar model. When rotational diffusion and polar alignment are comparable, particles are completely mixed. Our findings are relevant to the experimental pursuit of segregation dynamics of binary mixtures on curved surfaces.
Collapse
Affiliation(s)
- Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement, SPTE, South China Normal University, Guangzhou 510006, China.
| | | | | |
Collapse
|
8
|
Zhu WJ, Li TC, Zhong WR, Ai BQ. Rectification and separation of mixtures of active and passive particles driven by temperature difference. J Chem Phys 2020; 152:184903. [PMID: 32414246 DOI: 10.1063/5.0005013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transport and separation of binary mixtures of active and passive particles are investigated in the presence of temperature differences. It is found that temperature differences can strongly affect the rectification and separation of the mixtures. For active particles, there exists an optimal temperature difference at which the rectified efficiency is maximal. Passive particles are not propelled and move by collisions with active particles, so the response to temperature differences is more complicated. By changing the system parameters, active particles can change their directions, while passive particles always move in the same direction. The simulation results show that the separation of mixtures is sensitive to the system parameters, such as the angular velocity, the temperature difference, and the polar alignment. The mixed particles can be completely separated under certain conditions.
Collapse
Affiliation(s)
- Wei-Jing Zhu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Teng-Chao Li
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Wei-Rong Zhong
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
9
|
Liao GJ, Hall CK, Klapp SHL. Dynamical self-assembly of dipolar active Brownian particles in two dimensions. SOFT MATTER 2020; 16:2208-2223. [PMID: 32090218 DOI: 10.1039/c9sm01539f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Based on Brownian Dynamics (BD) simulations, we study the dynamical self-assembly of active Brownian particles with dipole-dipole interactions, stemming from a permanent point dipole at the particle center. The propulsion direction of each particle is chosen to be parallel to its dipole moment. We explore a wide range of motilities and dipolar coupling strengths and characterize the corresponding behavior based on several order parameters. At low densities and low motilities, the most important structural phenomenon is the aggregation of the dipolar particles into chains. Upon increasing the particle motility, these chain-like structures break, and the system transforms into a weakly correlated isotropic fluid. At high densities, we observe that the motility-induced phase separation is strongly suppressed by the dipolar coupling. Once the dipolar coupling dominates the thermal energy, the phase separation disappears, and the system rather displays a flocking state, where particles form giant clusters and move collective along one direction. We provide arguments for the emergence of the flocking behavior, which is absent in the passive dipolar system.
Collapse
Affiliation(s)
- Guo-Jun Liao
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany.
| | - Carol K Hall
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany.
| |
Collapse
|
10
|
Das S, Cacciuto A. Deviations from Blob Scaling Theory for Active Brownian Filaments Confined Within Cavities. PHYSICAL REVIEW LETTERS 2019; 123:087802. [PMID: 31491198 DOI: 10.1103/physrevlett.123.087802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 06/10/2023]
Abstract
Scaling arguments used to predict the radius of gyration of passive self-avoiding flexible polymers have been shown to hold for polymers under the influence of active fluctuations. In this Letter, we establish how the standard blob scaling theory representation of a polymer, capable of capturing the essential physics of passive polymers under a variety of settings, breaks down when dealing with active polymers under confinement. Using numerical simulations, we show how the predicted exponents associated to the forces applied by a polymer when restricted within cavities of different geometries hold only whenever the persistence length generated on the polymer by the active forces is much smaller than the size of the characteristic blob in the scaling theory.
Collapse
Affiliation(s)
- S Das
- Department of Chemistry, Columbia University 3000 Broadway, New York, New York 10027, USA
| | - A Cacciuto
- Department of Chemistry, Columbia University 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
11
|
Chandragiri S, Doostmohammadi A, Yeomans JM, Thampi SP. Active transport in a channel: stabilisation by flow or thermodynamics. SOFT MATTER 2019; 15:1597-1604. [PMID: 30672556 DOI: 10.1039/c8sm02103a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent experiments on active materials, such as dense bacterial suspensions and microtubule-kinesin motor mixtures, show a promising potential for achieving self-sustained flows. However, to develop active microfluidics it is necessary to understand the behaviour of active systems confined to channels. Therefore here we use continuum simulations to investigate the behaviour of active fluids in a two-dimensional channel. Motivated by the fact that most experimental systems show no ordering in the absence of activity, we concentrate on temperatures where there is no nematic order in the passive system, so that any nematic order is induced by the active flow. We systematically analyze the results, identify several different stable flow states, provide a phase diagram and show that the key parameters controlling the flow are the ratio of channel width to the length scale of active flow vortices, and whether the system is flow aligning or flow tumbling.
Collapse
Affiliation(s)
- Santhan Chandragiri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | | | |
Collapse
|
12
|
Ai BQ, Shao ZG, Zhong WR. Mixing and demixing of binary mixtures of polar chiral active particles. SOFT MATTER 2018; 14:4388-4395. [PMID: 29770829 DOI: 10.1039/c8sm00444g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We study a binary mixture of polar chiral (counterclockwise or clockwise) active particles in a two-dimensional box with periodic boundary conditions. Besides the excluded volume interactions between particles, the particles are also subjected to the polar velocity alignment. From the extensive Brownian dynamics simulations, it is found that the particle configuration (mixing or demixing) is determined by the competition between the chirality difference and the polar velocity alignment. When the chirality difference competes with the polar velocity alignment, the clockwise particles aggregate in one cluster and the counterclockwise particles aggregate in the other cluster; thus, the particles are demixed and can be separated. However, when the chirality difference or the polar velocity alignment is dominant, the particles are mixed. Our findings could be used for the experimental pursuit of the separation of binary mixtures of chiral active particles.
Collapse
Affiliation(s)
- Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.
| | | | | |
Collapse
|